Design of X-ray Target for a CNT-based High-brightness Microfocus X-ray Tube

탄소나노튜브를 이용한 고휘도 마이크로빔 X-선원 발생부 설계

  • Ihsan Aamir (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim Seon Kyu (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Heo Seong Hwan (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Cho Sung Oh (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • ;
  • 김선규 (한국과학기술원 원자력 및 양자공학과) ;
  • 허성환 (한국과학기술원 원자력 및 양자공학과) ;
  • 조성오 (한국과학기술원 원자력 및 양자공학과)
  • Published : 2006.01.01

Abstract

A target for a high-brightness microfocus x-ray tube, which is based on carbon nanotubes (CNT) as electron source, is designed. The x-ray tube has the following specifications: brightness of $1\times10^{11}phs/s.mm^2. mrad^2$, spot size $\~5{\mu}m$, and average x-ray energy of $20\~40 keV$. In order to meet the specifications, the design parameters of the target, such as configuration, material, thickness of the target as well as the required beam current, were optimized using computer code MCNPX. The design parameters were determined from the calculation of both x-ray spectrum and intensity distribution for a transmission type configuration. For the thin transmission type target to withstand vacuum pressure and localized thermal loading, the structural stability and temperature distribution were also considered. The material of the target was selected as molybdenum(Mo) and the optimized thickness was $7.2{\mu}m$ to be backed by $150{\mu}m$ beryllium (Be). In addition, the calculations revealed that the maximum temperature of the transmission target can be maintained within the limits of stable operation.

전자빔원으로 탄소나노튜브에 기초를 두고 있는 고휘도 마이크로빔 X선원용 타첫이 설계되었다. X-선원은 다음과 같은 제원을 따른다. $1\times10^{11} phs/s.mm^2.mrad^2$. 고휘도, 5 mm의 빔의 크기, $20\~40keV$ 평균 X-선 에너지. 제원을 만족시키기 위해서 구성, 물질, 타겟의 두께와 필요한 빔전류와 같은 타켓의 설계 변수들은 MCNPX code를 통해서 최적화되었다. 설계 변수들은 투과형 타겟 구조를 위해 X-선원의 스펙트럼과 세기의 분포의 계산으로부터 결정되었다 진공압력과 국소화된 열의 누적을 견디기 위한 투과형 타겟 구조를 위해서 구조적인 안정성과 온도 분포도 또한 고려되었다. 타겟 물질은 몰리보덴으로 선택되었고 최적화된 두께는 2mm로서 150mm 두께의 베릴륨이 붙여져 있다 부가적으로 투과형 타겟의 최대 온도가 안정적인 작동의 한계 내에서 유지될 수 있다는 것을 계산을 통하여 알게 되었다.

Keywords

References

  1. Brian Kerridge, Test and Measurement World (June, 2002)
  2. Fundamentals of Microfocus Radiography, from Shield Alloys (2005)
  3. Th. Tschentscher, Chem. Phys. 299, 271 (2004) https://doi.org/10.1016/j.chemphys.2003.12.013
  4. B. Sonntag, Nucl. Instrum. and Meth. A 467/468, 8 (2001) https://doi.org/10.1016/S0168-9002(01)00210-8
  5. Yuan Cheng and Otto Zhou, Physique 4, 9203) 1021 (2003) https://doi.org/10.1016/S1631-0705(03)00103-8
  6. H. S. Uh, S. S. Park, H. W. Noh, S. W. Ko, J. D. Lee, and C. G. Lee, J. Korean Phys. Soc. 47, S408 (2005)
  7. H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, and F. Okuyama, Appl. Phys. Lett. 78, 2531 (2001)
  8. G. Z. Yue, Q. Qiu, Bo Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, and O. Zhou, Appl. Phys. Lett. 81, 3227 (2002) https://doi.org/10.1063/1.1517179
  9. S. Senda, Y. Sakai, Y. Mizuta, S. Kita, and F. Okuyama, Appl. Phys. Lett. 85, 1758 (2004)
  10. Oak Ridge National Laboratory, Monte Carlo N-Particle Transport (MCNPX), code 2.4.0 (2002)
  11. Zhibi Wang and T. M. Kuzay, SPIE Vol. 1997-High Heat Flux Engineering II (1993)
  12. R. J. Vidmar and R. J. Barker, IEEE Trans. Plasma Sci. 26, 198 (1998) https://doi.org/10.1109/27.669628
  13. Metals Hand Book, 9th ed., Vol. 2, Properties and Selection: Nonferrous Alloys and Pure Metals, (American Society for Metals)
  14. Computational Fluid Dynamics Software, FLUENT 6. 1, (Fluent Inc., 2003)
  15. V. E. Cosslett, Proc. Phys. Soc. B 65, 782 (1952) https://doi.org/10.1088/0370-1301/65/10/305