DOI QR코드

DOI QR Code

UNIFORM ASYMPTOTICS IN THE EMPIRICAL MEAN RESIDUAL LIFE PROCESS

  • Bae, Jong-Sic (Department of Mathematics and Institute of Basic Science Sungkyunkwan University) ;
  • Kim, Sung-Yeun (Department of Mathematics and Institute of Basic Science Sungkyunkwan University)
  • Published : 2006.03.01

Abstract

In [5], Csorgo and Zitikis exposed the strong $uniform-over-[0,\;{\infty}]$ consistency, and weak $uniform-over-[0,\;{\infty}]$ approximation of the empirical mean residual life process by employing weight functions. We carry on the uniform asymptotic behaviors of the empirical mean residual life process over the whole positive half line by representing the process as an integral form. We compare our results with those of Yang [15], Hall and Wellner [8], and Csorgo and Zitikis [5].

Keywords

References

  1. J. Bae and S. Kim, The uniform law of large numbers for the Kaplan-Meier integral process, Bull. Austral. Math. Soc. 67 (2003), no. 3, 459-465 https://doi.org/10.1017/S0004972700037254
  2. J. Bae and S. Kim, The uniform central limit theorem for the Kaplan-Meier integral process, Bull. Austral. Math. Soc. 67 (2003), no. 3, 467-480 https://doi.org/10.1017/S0004972700037266
  3. J. Bae and S. Kim, The empirical LIL for the Kaplan-Meier integral process, Bull. Korean Math. Soc. 40 (2003), no. 2, 269-279 https://doi.org/10.4134/BKMS.2003.40.2.269
  4. F. P. Cantelli, Bulla determinazione empirica delle leggi di probabilita, Giornale dell'lstituto Italiano degli Attuari. 4 (1933), 421-424
  5. M. Csorgo and R. Zitikis, Mean residual life processes, Ann. Statist. 24 (1996), no. 4, 1717-1739 https://doi.org/10.1214/aos/1032298292
  6. M. D. Donsker, An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc. 6 (1951), 1-12
  7. V. Glivenko, Sulla determinazione empirica della leggi di probabilita, Giornale dell'lstituto Italiano degli Attuari. 4 (1933), 92-99
  8. W. J. Hall and J. A. Wellner, Estimation of Mean Residual Life, Unpublished Maunscript. University of Rochester 1979
  9. M. Ossiander, A central limit theorem under metric entropy with $L_2$ bracketing, Ann. Probab. 15 (1987), no. 3, 897-919 https://doi.org/10.1214/aop/1176992072
  10. D. Pollard, Empirical Processes: Theory and Applications, Inst. Math. Statist., Hayward, CA 1990
  11. V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 211-226 https://doi.org/10.1007/BF00534910
  12. W. Stute, The central limit theorem under random censorship, Ann. Statist. 23 (1995), no. 2, 422-439 https://doi.org/10.1214/aos/1176324528
  13. W. Stute and J. L. Wang, The strong law under random censorship, Ann. Statist. 21 (1993), no. 3, 1591-1607 https://doi.org/10.1214/aos/1176349273
  14. A. W. Van der Vaart and J. A. Wellner, Weak convergence and empirical processes. With applications to statistics, Springer-Verlag, New York, 1996
  15. G. L. Yang, Estimation of a biometric function, Ann. Statist. 6 (1978), no. 1, 112-116 https://doi.org/10.1214/aos/1176344070

Cited by

  1. On the Nonparametric Mean Residual Life Estimator in Length-biased Sampling vol.44, pp.3, 2015, https://doi.org/10.1080/03610926.2012.748328
  2. Life expectancy of a bathtub shaped failure distribution vol.51, pp.3, 2010, https://doi.org/10.1007/s00362-008-0148-x