DOI QR코드

DOI QR Code

Microstructure and Magnetic Characteristics of Mn-doped Finemet Nanocomposites

  • Le, Anh-Tuan (Research Center for Advanced Magnetic Materials, Chungnam National University) ;
  • Kim, Chong-Oh (Research Center for Advanced Magnetic Materials, Chungnam National University) ;
  • Chau Nguyen (Center for Materials Science, National University of Hanoi) ;
  • Tho Nguyen Duc (Center for Materials Science, National University of Hanoi) ;
  • Hoa Nguyen Quang (Center for Materials Science, National University of Hanoi) ;
  • Lee, Hee-Bok (Department of Physics Education, Kongju National University)
  • 발행 : 2006.03.01

초록

A thorough study about the influences of Mn substitution for Fe on the microstructure and magnetic characteristics of $Fe_{73.5-x}Mn-{x}Si_{13.5}B_{9}Nb_{3}Cu_1$ (x = 1, 3, 5) alloys prepared by the melt-spinning technique has been performed. Nanocomposites composed of nanoscale $(Fe,Mn)_{3}Si$ magnetic phase embedded in an amorphous matrix were obtained by annealing their amorphous alloys at $535^{\circ}C$ for 1 hour. The addition of Mn causes a slight increase in the mean grain size. The Curie temperatures of the initial amorphous phase and of the nanocrystals phase decreased, while the Curie temperature of the remaining amorphous phase remained nearly constant with increasing Mn content. Soft magnetic properties of the crystallized samples have been significantly improved by a proper thermal treatment. Accordingly, the giant magnetoimpedance effect is observed and ascribed to the increase of the magnetic permeability, and the decrease of the coercivity of the samples. The increased magnetic permeability is resulted from a decrease in the magnetocrystalline anisotropy and saturation magnetostriction.

키워드

참고문헌

  1. M. Ohnuma, D. H. Ping, T. Abe, H. Onodera, K. Hono, and Y. Yoshizawa, J. Appl. Phys. 93, 9186 (2003) https://doi.org/10.1063/1.1569396
  2. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988) https://doi.org/10.1063/1.342149
  3. M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater. Sci. 44, 291 (1999) https://doi.org/10.1016/S0079-6425(99)00002-X
  4. G. Herzer, IEEE. Trans. Magn. 25, 3327 (1989) https://doi.org/10.1109/20.42292
  5. J. D. Ayers, V. G. Harris, J. A. Sprague, and W. T. Elam, J. Appl. Phys. 64, 974 (1994)
  6. P. Martin, M. Vazquez, A. O. Olofijana, and H. A. Davies, Nanostruct. Mater. 10, 299 (1998) https://doi.org/10.1016/S0965-9773(98)00070-1
  7. C. G. Polo, J. I. Perez-Landazabal, V. Recarte, P. M. Zelis, Y. F. Li, and M. Vazquez,. J. Magn. Magn. Mater. 290, 1517 (2005) https://doi.org/10.1016/j.jmmm.2004.11.564
  8. A. C. Hsiao, M. E. McHenry, D. E. Laughlin, M. R. Tamoria, and V. G. Harris, IEEE. Trans. Magn. 37, 2236 (2001) https://doi.org/10.1109/20.951134
  9. M. H. Phan, H. X. Peng, M. R. Wiscom, S. C. Yu, and N. Chau, Phys. Status Solidi A 201, 1558 (2004) https://doi.org/10.1002/pssa.200306791
  10. L. V. Pannia, K. Mohri, T. Uchiyama, and M. Noda, IEEE Trans. Magn. 31, 1249 (1995) https://doi.org/10.1109/20.364815
  11. Heebok Lee, Y. K. Kim, K. J. Lee, and T. K. Kim, J. Magn. Magn. Mater. 215, 310 (2000) https://doi.org/10.1016/S0304-8853(00)00143-8
  12. B. D. Cullity, Elements of X-ray diffraction, 2nd Ed, Addison-Wesley Publishing Company, Inc., Reading, MA (1978), pp. 102