DOI QR코드

DOI QR Code

A compressible finite element model for hyperelastic members under different modes of deformation

  • Manna, M.C. (Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology) ;
  • Sheikh, A.H. (Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology) ;
  • Bhattacharyya, R. (Department of Mechanical Engineering, Indian Institute of Technology)
  • Received : 2005.08.25
  • Accepted : 2006.05.17
  • Published : 2006.09.30

Abstract

The performance of a three dimensional non-linear finite element model for hyperelastic material considering the effect of compressibility is studied by analyzing rubber blocks under different modes of deformation. It includes simple tension, pure shear, simple shear, pure bending and a mixed mode combining compression, shear and bending. The compressibility of the hyperelastic material is represented in the strain energy function. The nonlinear formulation is based on updated Lagrangian (UL) technique. The displacement model is implemented with a twenty node brick element having u, ${\nu}$ and w as the degrees of freedom at each node. The results obtained by the present numerical model are compared with the analytical solutions available for the basic modes of deformation where the agreement between the results is found to be satisfactory. In this context some new results are generated for future references since the number of available results on the present problem is not sufficient enough.

Keywords

References

  1. Argyris, J.H., Dunne, P.C., Angelopoulos, T. and Bichat, B. (1974), 'Large natural strains and some special difficulties due to non-linearity and incompressibility in finite elements', Comput. Methods Appl. Mech. Eng., 4, 219-278 https://doi.org/10.1016/0045-7825(74)90035-8
  2. Askes, H., Kuhl, E. and Steinmann, P. (2004), 'An ALE formulation based on spatial and material settings of continuum mechanics, Part 2: Generic hyperelastic formulation', Comput. Methods Appl. Mech. Eng., 193, 4223-4245 https://doi.org/10.1016/j.cma.2003.09.031
  3. Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis, Prentice Hall, Englewood Cliffs
  4. Beatty, M.F. (1987), 'Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues with examples', Appl. Mech. Rev., 40, 1699-1734 https://doi.org/10.1115/1.3149545
  5. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), 'Element-free Galerkin methods', Int. J. Numer. Methods Eng., 37, 229-256 https://doi.org/10.1002/nme.1620370205
  6. Chen, J.-S. and Pan, C. (1996), 'A pressure projection method for nearly incompressible rubber hyperelasticity, Part I: Theory', J. Appl. Mech., ASME, 63, 862-868 https://doi.org/10.1115/1.2787240
  7. Chen, J.S., Yoon, S., Wang, H.P. and Liu, W.K. (2000), 'An improved reproducing kernel particle method for nearly incompressible finite elasticity', Comput. Methods Appl. Mech. Eng., 181, 117-145 https://doi.org/10.1016/S0045-7825(99)00067-5
  8. Cheng, J-S. and Wu, C.-T. (1996), 'A pressure projection method for nearly incompressible rubber hyperelasticity, Part II: Applications', J. Appl. Mech., ASME, 63, 869-876 https://doi.org/10.1115/1.2787241
  9. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2001), Concepts and Applications of Finite Element Analysis, J. Wiley & Sons, New York, 4th Edition
  10. Crisfield, M.A. (1981), 'A fast incremental/iterative solution procedure that handles 'snap-through'', Comput. Struct., 13, 55-62 https://doi.org/10.1016/0045-7949(81)90108-5
  11. De Souza Neto, E.A. and Feng, Y.T. (1999), 'On the determination of the path direction for arc-length methods in the presence of bifurcations and 'snap-backs'', Comput. Methods Appl. Mech. Eng., 179, 81-89 https://doi.org/10.1016/S0045-7825(99)00042-0
  12. Gadala, M.S. (1992), 'Alternative methods for the solution of hyperelastic problems with incompressibility', Comput. Struct., 42, 1-10 https://doi.org/10.1016/0045-7949(92)90530-D
  13. Gent, A.N. (2001), Engineering with Rubber, 2nd Edition, Hanser Publishers
  14. Hermmann, L.R. (1965), 'Elasticity equations for incompressible and nearly incompressible materials by a variational theorem', AIAA J., 3, 1896-1900 https://doi.org/10.2514/3.3277
  15. Hinton, E., and Campbell, J.S. (1974), 'Local and global smoothing of discontinuous finite element functions using a least squares method', Int. J. Numer. Methods Eng., 8, 461-480 https://doi.org/10.1002/nme.1620080303
  16. Kuhl, E., Askes, H. and Steinmann, P. (2004), 'An ALE formulation based on spatial and material settings of continuum mechanics, Part 1: Generic hyperelastic formulation', Comput. Methods Appl. Mech. Eng., 193, 4207-4222 https://doi.org/10.1016/j.cma.2003.09.030
  17. Liu, W.K., Chang, H., Chen, J.S. and Belytschko, T. (1988), 'Arbitrary Lagrangian Eulerian Petrov-Galerkin finite elements for nonlinear continua', Comput. Methods Appl. Mech. Eng,, 68, 259-310 https://doi.org/10.1016/0045-7825(88)90011-4
  18. Liu, W.K., Chen, J.S. and Zhang, Y.F. (1991), 'Adaptive ALE finite elements with particular reference to external work rate on frictional interface', Comput. Methods Appl. Mech. Eng, 93, 189-216 https://doi.org/10.1016/0045-7825(91)90151-U
  19. Masud, A. and Xia, K. (2005), 'A stabilized mixed finite element method for nearly incompressible elasticity', J. Appl. Mech., 72, 711-720 https://doi.org/10.1115/1.1985433
  20. Monaghan, J.J. (1988), 'An introduction to SPH', Comput. Phys. Comm., 48, 89-96 https://doi.org/10.1016/0010-4655(88)90026-4
  21. Nayroles, B., Touzot, G. and Villon, P. (1992), 'Generalizing the finite element method: Diffuse approximation and diffuse elements', Comput. Mech., 10, 307-318 https://doi.org/10.1007/BF00364252
  22. Obata, Y. (1974), PhD Thesis, School of Engineering, Kyoto University, Japan
  23. Ogden, R.W. (1972), 'Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubber-like solids', Proc. R. Soc. London, A 326, 565-584
  24. Ogden, R.W. (1984), Non-linear Elastic Deformations, Ellis Horwood, Chichester
  25. Peng, S.H., Shimbori, T. and Naderi, A. (1994), 'Measurement of elastomer's bulk modulus by means of a confined compression test', Rubber Chem. Technology, 67, 871-879 https://doi.org/10.5254/1.3538718
  26. Peng, S.H. and Chang, W.V. (1997), 'A compressible approach in finite element analysis of rubber-elastic materials', Comput. Struct., 62, 573-593 https://doi.org/10.1016/S0045-7949(96)00195-2
  27. Sulsky, D., Chen, Z. and Schreyer, H.L. (1994), 'A particle method for history-dependent materials', Comput. Methods Appl. Mech. Eng, 118, 179-196 https://doi.org/10.1016/0045-7825(94)00033-6
  28. Sussman, T. and Bathe, K.J. (1987), 'A finite element formulation for nonlinear incompressible elastic and inelastic analysis', Comput. Struct., 26, 357-409 https://doi.org/10.1016/0045-7949(87)90265-3
  29. Treloar, L.R.G. (1944), 'Stress-strain data for vulcanized rubber under various types of deformation', Trans. Fraday Soc., 40, 59-70 https://doi.org/10.1039/tf9444000059
  30. Zidi, M. and Cheref, M. (2002), 'Finite deformations of a hyperelastic, compressible and fibre reinforced tube', European Journal of Mechanics A/Solids, 21, 971-980 https://doi.org/10.1016/S0997-7538(02)01239-1
  31. Zienkiewicz, O.C. (1977), The Finite Element Method, 3rd Edn. Mc-Graw-Hill, New York

Cited by

  1. Static analysis of rubber components with piezoelectric patches using nonlinear finite element vol.5, pp.1, 2006, https://doi.org/10.12989/sss.2009.5.1.023