Structural and Optical Properties of Self-assembled InAs/InAl(Ga)Ae Quantum Dots on InP

InP 기판에 성장한 자발형성 InAs/InAl(Ga)As 양자점의 구조 및 광학적 특성

  • Kim Jin-Soo (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lee Jin-Hong (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Hong Sung-Ui (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kwack Ho-Sang (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Choi Byung-Seok (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Oh Dae-Kon (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI))
  • 김진수 (한국전자통신연구원 IT융합부품연구소) ;
  • 이진홍 (한국전자통신연구원 IT융합부품연구소) ;
  • 홍성의 (한국전자통신연구원 IT융합부품연구소) ;
  • 곽호상 (한국전자통신연구원 IT융합부품연구소) ;
  • 최병석 (한국전자통신연구원 IT융합부품연구소) ;
  • 오대곤 (한국전자통신연구원 IT융합부품연구소)
  • Published : 2006.03.01

Abstract

Self-assembled InAs/InAl(Ga)As quantum dots (QDs) were grown on InP substrates by a molecular-beam epiaxy, and their structural and optical properties were investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and room-temperature photoluminescence (PL). AFM images indicated that the InAs quantum structures showed various shapes such as quantum dashes, asymmetric and symmetric QDs mainly caused by the initial surface conditions of InAl(Ga)As with the intrinsic phase separation. For the buried InAs QDs in an InAlGaAs matrix, the average lateral size and height of QDs were 23 and 2 nm, respectively. By changing the growth conditions for the QD samples, the emission wavelength of $1.55{\mu}m$ was obtained, which is one of the wavelength windows for fiber optic communications.

분자선증착기 (Molecular beam epitaxy. MBE)를 이용하여 InP (001) 기판에 자발형성 (Self-assembled) InAs/InAlAs, InAs/InAlGaAs 양자점 (quantum dots, QDs)을 형성하고 구조 및 광학적 특성을 원자력간현미경(Atomic force microscopy, AFM), 투과전자현미경 (Transmission electron microscopy, TEM), 상온 포토루미네슨스 (Photoluminescence, PL) 실험을 통하여 분석하였다. AFM 측정을 통해 표면 형태를 분석한 결과 InAs 양자구조는 기저물질의 표면상태에 따라 양자대쉬, 비대칭적인 형태를 갖는 양자점, 대칭적인 형태를 갖는 양자점과 같이 다양하게 성장되었다. InAlGaAs 물질을 장벽층으로 하는 InAs 양자점의 평균크기는 폭이 대략 23 nm, 높이가 약 2 nm 이었다. 성장조건을 다양하게 변화시켜 광통신시스템에 중요한 파장중의 하나인 $1.55{\mu}m$ 발광파장을 갖는 InAs 양자점을 형성하였다.

Keywords

References

  1. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982) https://doi.org/10.1063/1.92959
  2. G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, IEEE Photon. Technol. Lett. 12, 230 (2000) https://doi.org/10.1109/68.826897
  3. F. Klopf, R. Krebs, A. Wolf, M. Emmerling, J. P. Reithmaier, and A. Forchel, Electron. Lett. 37, 634 (2001) https://doi.org/10.1049/el:20010420
  4. J. S. Kim, J. H. Lee, S. U. Hong, W. S. Han, H.-S. Kwack, C. W. Lee, and D. K. Oh, J. Appl. Phys. 94, 6603 (2003) https://doi.org/10.1063/1.1621714
  5. J. W. Jang, S. H. Pyun, S. H. Lee, I. C. Lee, W. G. Jeong, R. Stevenson, P. D. Dapkus, N. J. Kim, M. S. Hwang, and D. Lee, Appl. Phys. Lett. 85, 3675 (2004) https://doi.org/10.1063/1.1812365
  6. J. S. Kim, J. H. Lee, S. U. Hong, H.-S. Kwack, B. S. Choi, and D. K. Oh, Appl. Phys. Lett. 87, 053102 (2005) https://doi.org/10.1063/1.2005385
  7. S. Yoon, Y. Moon, T.-W. Lee, E. Yoon, and Y. D. Kim, Appl. Phys. Lett. 74, 2029 (1999) https://doi.org/10.1063/1.123746
  8. R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, J. Crystal Growth 251, 248 (2003) https://doi.org/10.1016/S0022-0248(02)02371-0
  9. R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, IEEE Photonics Technol. Lett. 13, 767 (2001) https://doi.org/10.1109/68.903205
  10. J. S. Kim, J. H. Lee, S. U. Hong, W. S. Han, H.-S. Kwack, and D. K. Oh, Appl. Phys. Lett. 83, 3785 (2003) https://doi.org/10.1063/1.1623947
  11. J. S. Kim, J. H. Lee, S. U. Hong, H.-S. Kwack, C. W. Lee, and D. K. Oh, IEEE Photon. Tech. Lett. 16, 1607 (2004) https://doi.org/10.1109/LPT.2004.828494
  12. J. S. Kim, J. H. Lee, S. U. Hong, H.-S. Kwack, C. W. Lee, and D. K. Oh, ETRI J. 26, 475 (2004) https://doi.org/10.4218/etrij.04.0104.0028
  13. J. S. Kim, J. H. Lee, S. U. Hong, H.-S. Kwack, B. S. Choi, and D. K. Oh, IEEE Photon. Tech. Lett. 18, 595 (2006) https://doi.org/10.1109/LPT.2006.870187
  14. J. Brault, M. Gendry, G. Grenet, G. Hollinger, J. Olivares, B. Salem, T. Benyattou, and G. Bremond, J. Appl. Phys. 92, 506 (2002) https://doi.org/10.1063/1.1481959
  15. L. V. Asryan, M. Grundmann, N. N. Ledentsov, O. Stier, R. A. Suris, and D. Bimberg, J. Appl. Phys. 90, 1666 (2001) https://doi.org/10.1063/1.1383575
  16. S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G, Xie, Appl. Phys. Lett. 72, 3335 (1998) https://doi.org/10.1063/1.121595