Electrical Property in InAn/GaAs Quantum Dot Infrared Photodetector with Hydrogen Plasma Treatment

수소화 처리된 InAs/GaAs 양자점 적외선 수광소자의 전기적 특성

  • Nam H.D. (Nano Device Research Center, Korea Institute of Science and Technology) ;
  • Song J.D. (Nano Device Research Center, Korea Institute of Science and Technology) ;
  • Choi W.J. (Nano Device Research Center, Korea Institute of Science and Technology) ;
  • Cho W.J. (Nano Device Research Center, Korea Institute of Science and Technology) ;
  • Lee J.I. (Nano Device Research Center, Korea Institute of Science and Technology) ;
  • Choe J.W. (Department of Physics, Kyung Hee University) ;
  • Yang H.S. (Department of Physics, Chung Ang University)
  • 남형도 (한국과학기술연구원 나노소자 연구센터) ;
  • 송진동 (한국과학기술연구원 나노소자 연구센터) ;
  • 최원준 (한국과학기술연구원 나노소자 연구센터) ;
  • 조운조 (한국과학기술연구원 나노소자 연구센터) ;
  • 이정일 (한국과학기술연구원 나노소자 연구센터) ;
  • 최정우 (경희대학교 물리학과) ;
  • 양해석 (중앙대학교 물리학과)
  • Published : 2006.03.01

Abstract

In this paper, we investigated the effect of hydrogen-plasma (H-plasma) treatment on the electrical and optical properties of a quantum dot infrared photodetector (QDIP) with a 5-stacked InAs dots in an InGaAs/GaAs well structure and $Al_{0.3}Ga_{0.7}As/GaAs$ SL (superlattice) current blocking layer. It has been observed that H-plasma treatment didn't affect the band structure of QDIP. It has been also observed that the H-plasma treatment on the QDIP not only enhance the electrical property of QDIP by curing the defect channels in $Al_{0.3}Ga_{0.7}As/GaAs$ SL but also introduce defects in QDIP structure. The H-plasma treatment for 10 min with 20 W of RF power provided the lowest dark current, which made it possible to measure the photo-current (PC) of QDIP whose PC was not detectable without the H-plasma treatment due to the high dark current.

InGaAs/GaAs 양자 우물 내에 삽입된 InAs 양자점으로 구성된 5층의 흡수층과 $Al_{0.3}Ga_{0.7}As/GaAs$ SL (superlattice) 암전류 장벽층을 갖는 QDIP (quantum dot infrared photodetector) 구조에 대한 수소 RF 플라즈마에 의한 수소화 처리가 QDIP의 전기적. 광학적 특성에 미치는 영향에 대해 연구하였다. RF 플라즈마 수소화 처리는 양자점의 밴드구조에 영향을 미치지 않았으며 $Al_{0.3}Ga_{0.7}As/GaAs$ SL 암전류 장벽층 내의 결함 제거 및 QDIP 구조 내 결함 생성을 동시에 유도함으로써 QDIP의 전기적 특성 향상은 수소 플라즈마 처리시간의 함수임을 알았다. 20 W의 수소 RF 플라즈마를 사용했을 때, 10분간의 플라즈마 조사가 가장 좋은 전기적 특성을 제공하여 높은 암전류 때문에 원시료에서는 측정 할 수 없었던 광전류 신호를 측정 할 수 있었다.

Keywords

References

  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999), and references therein
  2. S. Kim and M. Razeghi, in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H. Singh Nalwa (Academic Press, San Diego, 2001), Vol. 2, Chap. 3
  3. M. S. Skolnick and D. J. Mowbray, Phys. E. 21, 155 (2004) https://doi.org/10.1016/j.physe.2003.11.013
  4. K. W. Berryman, S. A. Lyon, and M. Segev, Appl. Phys. Lett. 70, 1861 (1997) https://doi.org/10.1063/1.118714
  5. J. Phillips, K. Kamath, and P. Bhattacharya, Appl. Phys. Lett. 72, 2020 (1998) https://doi.org/10.1063/1.121252
  6. D. Pan, E. Towe, and S. Kennerly, Appl. Phys. Lett. 73, 1937 (1998) https://doi.org/10.1063/1.122328
  7. S. Maimon, E. Finkman, G. Bahir, S. E. Schacham, J. M. Garcia, and P. M. Petroff, Appl. Phys. Lett. 73, 2003 (1998) https://doi.org/10.1063/1.122349
  8. Y. C. Zhang, Z. G. Wang, B. Xu, F. Q. Liu, Y. H. Chen, and P. Dowd, J. Crystal. Growth. 244, 136 (2002) https://doi.org/10.1016/S0022-0248(02)01614-7
  9. G. Zhang, M. Pessa, Appl. Surf. Sci. 75, 1989 (1994)
  10. M. W. Dashiell, U. Denker, C. Muller, G. Costantini, C. Manazano, K. Kern, O. G. Schmidt, Appl, Phys. Lett. 80, 1279 (2002) https://doi.org/10.1063/1.1430508
  11. W. H. Jiang, H. Z. Xu, B. Xu, X. L. Ye, J. Wu, D. Ding, J. B. Liang, Z. G. Wang, J. Crystal Growth. 212, 356 (2000) https://doi.org/10.1016/S0022-0248(00)00028-2
  12. K. Stewart, M. Buda, J. Wong‐Leung, L. Fu, C. Jagadish, A. Stiff‐Roberts, and P. Bhattacharya, J. Appl. Phys. 94, 5283 (2003) https://doi.org/10.1063/1.1609634
  13. M. Gal, A. Tavendale, M. J. Johnson, and B. F. Usher, J. Appl. Phys. 66, 968 (1989) https://doi.org/10.1063/1.343475
  14. E. C. Le Ru, P. D. Siverns, and R. Murray, Appl. Phys. Lett. 77, 2446 (2000) https://doi.org/10.1063/1.1318931
  15. R. Leon, G. M. Swift, B. Magness, W. A. Taylor, Y. S. Tang, K. L. Wang, P. Dowd, and Y. H. Zhang, Appl. Phys. Lett. 76, 2074 (2000) https://doi.org/10.1063/1.126259
  16. A. P. Jacob, Q. X. Zhao, M. Willander, F. Ferdos, M. Sadeghi, and S. M. Wang, J. Appl. Phys. 92, 6794 (2002) https://doi.org/10.1063/1.1515379
  17. J. D. Song, Y. M. Park, J. C. Shin, J. G. Lim, Y. J. Park, W. J. Choi, I. K. Han, J. I. Lee, H. S. Kim and C. G. Park, J. Appl. Phys. 96, 4122 (2004) https://doi.org/10.1063/1.1794902
  18. H. D. Nam, J. D. Song, W. J. Choi, J. I. Lee, H. S. Yang, H. S. Kwack, and Y. H. Cho, J. Korean. Phys. Soc. 47, 1002 (2005)
  19. E. T. Kim, Z. H. Chen, M. Ho and A. Madhukar, J. Vaccum. Sci. Technol. 73, 1188 (2002)