Induction of Apoptotic Cell Death by Methanol Extract of Houttuynia cordata Thunb. in A549 Human Lung Carcinoma Cells

어성초 메탄올 추출물에 의한 A549 인체 폐암세포 사멸유도에 관한 연구

  • Hong, Su-Hyun (Department of Biochemistry, Dongeui University College of Oriental Medicine and Department of Biomaterial Control, Dongeui University Graduate School, (BK21 program)) ;
  • Park, Cheol (Department of Biochemistry, Dongeui University College of Oriental Medicine and Department of Biomaterial Control, Dongeui University Graduate School, (BK21 program)) ;
  • Hong, Sang-Hoon (Department of Internal Medicine, Dongeui University College of Oriental Medicine and Department of Biomaterial Control, dongeui University Graduate School) ;
  • Choi, Byung-Tae (Department of Anatomy, Dongeui University College of Oriental Medicine and Department of Biomaterial Control, dongeui University Graduate School) ;
  • Lee, Yong-Tae (Department of Physiology, Dongeui University College of Oriental Medicine and Department of Biomaterial Control, dongeui University Graduate School)
  • 홍수현 (동의대학교 한의과대학 생화학교실 및 대학원 바이오물질제어학과) ;
  • 박철 (동의대학교 한의과대학 생화학교실 및 대학원 바이오물질제어학과) ;
  • 홍상훈 (동의대학교 한의과대학 내과학교실) ;
  • 최병태 (동의대학교 한의과대학 해부학교실) ;
  • 이용태 (동의대학교 한의과대학 생리학교실)
  • Published : 2006.12.25

Abstract

Houttuynia cordata Thunb, well known as 'E-Sung-Cho' in Korea, is traditional medicinal plant generally used in Oriental medicine therapy. We previously reported that the water extract of H. cordata inhibited cell proliferation and induced apoptosis in human breast carcinoma cells. In the present study, we investigated the biochemical mechanisms of anti-proliferative effects by the methanol extract of H. cordata (MEHC) in human lung carcinoma A549 cells. It was found that MEHC could inhibit the cell growth in a dose-dependent manner, which was associated with morphological change and apoptotic cell death as determined by formation of apoptotic bodies, DNA fragmentation and increased populations of apoptotic-sub G1 phase cells. Apoptosis of A549 cells by MEHC was also connected with a down-regulation of anti-apoptotic Bcl-2 and inhibitor of apoptosis proteins (IAPs) expression. MEHC treatment induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and a concomitant inhibition of poly(ADP-ribose) polymerase (PARP), ${\beta}$-catenin and phospholipase (PLC)-${\gamma}$1 protein expression. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of H. cordata.

Keywords

References

  1. Arends, M.J., Morris, R.G., Wyllie, A.H. Apoptosis. The role of the endonuclease. Am. J. Pathol. 136:593-608, 1990
  2. Evans, V.G. Multiple pathways to apoptosis. Cell Biol. Int. 17:461-476, 1993 https://doi.org/10.1006/cbir.1993.1087
  3. Shi, L., Nishioka, W.K., Th'ng, J., Bradbury, E.M., Litchfield, D.W., Greenberg, A.H. Premature p34cdc2 activation required for apoptosis. Science. 263:1143-1145, 1994 https://doi.org/10.1126/science.8108732
  4. Nagata, S. Apoptosis by death factor. Cell. 88: 355-365, 1997 https://doi.org/10.1016/S0092-8674(00)81874-7
  5. Chiarugi, V., Magnelli, L., Basi, G. Apoptosis and the cell cycle. Cell. Mol. Biol. Res. 40:603-612, 1994
  6. Chung, Y.T., Park, S.T., Mun, J.Y., Kim, J.M., Choi, M.K., Han, D.S., Kim, B. Cytotoxic effects of actinomycin D, adriamycin and puromycin in the development stage of early mouse embryos. J. Wonkwang Medical Sci. 3:13-334, 1987
  7. Seo, J.D., Lee, D.K. and Um, I.W. An experimental study of the cytotoxic effects of cis-diamine-dichloroplatinum (cispatin) and vincristione on cultured human oral fibroblast. J. Wonkwang Dental Research Institute. 2:55-68, 1992
  8. 姜允晧. 數種의 韓藥物이 白鼠의 自然殺害細胞活性에 미치는 影響. 慶熙韓醫大論文潗. 9:217-240, 1987
  9. 吉村永星. 魚腥草 및 桑菊飮이 免疫機能에 미치는 影響. 大韓韓醫學會誌. 16:295, 1995
  10. Song, J.H., Kim, M.J., Kwon, H.D., Park, I.H. Antimicrobial activity of fractional extracts from Houttuynia cordata root. J. Korean Soc. Food Sci. Nutr. 32:1055-1058. 2003
  11. Hayashi. K, Kamiya. M., Hayashi, T. Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta. Med. 61: 237-241, 1995 https://doi.org/10.1055/s-2006-958063
  12. Chung, C.K., Ham, S.S., Lee, S.Y., Oh, D.H., Choi, S.Y., Kang, I.J., Nam, S.M. Effects of Houttuynia cordata ethanol extracts on serum lipies and antioxidant enzymes in rats fed high fat die. J. Korean Soc. Food Sci. Nutr. 28:205-211, 1999
  13. Choi, Y.H., Kim, E.Y., Park, E.Y., Rhee, S.H., Lee, W.H. Antimutagenic effects of the juice and boiling water extract of Houttuynia cordata Thunb. J. Korean Soc. Food Sci. Nutr. 23:916-921, 1994
  14. Kim, H.J. Biological effects of Houttuynia cordata Thunb extract on murine and human immune system. MS Thesis. Seoul National University. 2000
  15. Chun, E.Y. Partial purification of Houttuynia cordata Thunb extract and characterization of its immunological activities in human. MS Thesis. Seoul National University. 1997
  16. Kim, S.K., Ryu, S.Y., No, J., Choi, S.U., Kim, Y.S. Cytotoxic alkaloids from Houttuynia cordata. Arch. Pharm. Res. 24: 518-521, 2001 https://doi.org/10.1007/BF02975156
  17. Lee, S.T., Lee, Y.H., Choi, Y.J., Shon, G.M., Lee, H.J., Hoe, J.S. Composition of quercetin and soluble tannin in Houttuynia cordata Thunb according to growth stages and plant parts. Korean J. Medicinal Corp. Sci. 10:12-16, 2002
  18. Evans, V.G. Multiple pathways to apoptosis. Cell Biol. Int. 17:461-476, 1993 https://doi.org/10.1006/cbir.1993.1087
  19. Shi, L., Nishioka, W.K., Th'ng, J., Bradbury, E.M., Litchfield, D.W., Greenberg, A.H. Premature p34cdc2 activation required for apoptosis. Science. 263:1143-1145, 1994 https://doi.org/10.1126/science.8108732
  20. Fabian, D., Koppel, J., Maddox-Hyttel, P. Apoptotic processes during mammalian preimplantation development. Theriogenology. 64:221-231, 2005 https://doi.org/10.1016/j.theriogenology.2004.11.022
  21. Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B., Borner, C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature. 391: 496-499, 1998 https://doi.org/10.1038/35160
  22. Osford, S.M., Dallman, C.L., Johnson, P.W., Ganesan, A., Packham, G. Current strategies to target the anti-apoptotic Bcl-2 protein in cancer cells. Curr. Med. Chem. 11: 1031-1039, 2004 https://doi.org/10.2174/0929867043455486
  23. Lowe, S.W., Ruley, H.E., Jacks, T., Housman, D.E. p53- dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 74:957-967, 1993 https://doi.org/10.1016/0092-8674(93)90719-7
  24. Donovan, M., Cotter, T.G. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim. Biophys. Acta. 1644:133-147, 2004 https://doi.org/10.1016/j.bbamcr.2003.08.011
  25. Holcik, M., Gibson, H., Korneluk, R.G. XIAP: apoptotic brake and promising therapeutic target. Apoptosis. 6:253-261, 2001 https://doi.org/10.1023/A:1011379307472
  26. Cheng, J.Q., Jiang, X., Fraser, M., Li, M., Dan, H.C., Sun, M., Tsang, B.K. Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist. Updat. 5:131-146, 2002 https://doi.org/10.1016/S1368-7646(02)00003-1
  27. Salvesen, G.S., Duckett, C.S. IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol. 3: 401-410, 2002 https://doi.org/10.1038/nrm830
  28. LaCasse, E.C., Baird, S., Korneluk, R.G., MacKenzie, A.E. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene. 17:3247-3259, 1998 https://doi.org/10.1038/sj.onc.1202569
  29. Nagata, S. Apoptosis by death factor. Cell. 88: 355-365, 1997 https://doi.org/10.1016/S0092-8674(00)81874-7
  30. Allen, R.T., Cluck, M.W., Agrawal, D.K. Mechanisms controlling cellular suicide: role of Bcl-2 and caspases. Cell Mol. Life Sci. 54:427-445, 1998 https://doi.org/10.1007/s000180050171
  31. Rao, L., White, E. Bcl-2 and the ICE family of apoptotic regulators: making a connection. Curr. Opin. Genet. Dev. 7:52-58, 1997 https://doi.org/10.1016/S0959-437X(97)80109-8
  32. Tewari, M., Quan, L.T., O'Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D.R., Poirier, G.G., Salvesen, G.S., Dixit, V.M. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 81:801-809, 1995 https://doi.org/10.1016/0092-8674(95)90541-3
  33. Kaufmann, S.H., Desnoyers, S., Ottaviano, Y., Davidson, N.E., Poirier, G.G. Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53:3976- 3985, 1993
  34. Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G., Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 371: 346-347, 1994 https://doi.org/10.1038/371346a0
  35. Johnson, J.P. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev. 18:345-357, 1999 https://doi.org/10.1023/A:1006304806799
  36. Wijnhoven, B.P., Dinjens, W.N., Pignatelli, M. E-cadherin- catenin cell-cell adhesion complex and human cancer. Br. J. Surg. 87:992-1005, 2000 https://doi.org/10.1046/j.1365-2168.2000.01513.x
  37. Fukuda, K. Apoptosis-associated cleavage of beta-catenin in human colon cancer and rat hepatoma cells. Int, J, Biochem, Cell Biol. 31:519-529, 1999 https://doi.org/10.1016/S1357-2725(98)00119-8
  38. Chang, J.S., Noh, D.Y., Park, I.A., Kim, M.J., Song, H., Ryu, S.H., Suh, P.G. Overexpression of phospholipase C-gamma1 in rat 3Y1 fibroblast cells leads to malignant transformation. Cancer Res. 57:5465-5468, 1997
  39. Myklebust, J.H., Blomhoff, H.K., Rusten, L.S., Stokke, T., Smeland, E.B. Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Exp, Hematol. 30: 990-1000, 2002 https://doi.org/10.1016/S0301-472X(02)00868-8
  40. Bae, S.S., Perry, D.K., Oh, Y.S., Choi, J.H., Galadari, S.H., Ghayur, T., Ryu, S.H., Hannun, Y.A., Suh, P.G. Proteolytic cleavage of phospholipase C-gamma1 during apoptosis in Molt-4 cells. FASEB. J. 14:1083-1092, 2000 https://doi.org/10.1096/fasebj.14.9.1083
  41. Sheikh, M.S., Huang, Y. Death receptors as targets of cancer therapeutics. Curr. Cancer Drug Targets. 4:97-104, 2004 https://doi.org/10.2174/1568009043481597
  42. Klas, C., Debatin, K.M., Jonker, R.R., Krammer, P.H. Activation interferes with the APO-1 pathway in mature human T cells. Int. Immunol. 5:625-630, 1993 https://doi.org/10.1093/intimm/5.6.625
  43. Daniel, P.T., Krammer, P.H. Activation induces sensitivity toward APO-1 (CD95)-mediated apoptosis in human B cells. J. Immunol. 152:5624-5632, 1994