GFRP 보강근의 인장강도 분석을 위한 시험방법 비교 연구

유영찬1*·박지선1·류영준1·박영환1
1한국건설기술연구원 건축연구부

A Comparative Study on the Testing Methods for the Analysis of Tensile Strength of GFRP Rebars

Young-Chan You1, Ji-Sun Park1, Young-Jun You1, and Young-Hwan Park1
1 Korea Institute of Construction Technology, Koyang 411-712, Korea

ABSTRACT The main objective of this experimental study is to examine the feasibilities of each testing method with various kinds of grip systems for the analysis of tensile strength of GFRP (glass fiber reinforced polymer) reinforcing bars. Three types of grip systems were examined such as resin-sleeved pipe-type grip proposed by CSA (Canadian Standard Association), frictional resistance type metal grip by ASTM (American Standard for Testing and Materials) and wedge-inserted cone-type grip normally used in prestressing tendons. Also, mechanical properties of GFRP rebars with different surface deformations were investigated for each different type of testing grip used in this study. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made according to the CSA S806-02 recommendations. From the test results, it was found that the highest tensile strengths of GFRP rebars were observed when tested by resin-sleeved grip system regardless of their different surface deformations. But tensile strengths of GFRP rebars by ASTM grip system are only 10% less than those by CSA grip system. On the other hand, CSA grip is not only difficult to prepare but also not disposable. Therefore, ASTM grip system is recommended as a practical alternative to estimate the tensile strength of GFRP rebars.

Keywords GFRP (glass fiber reinforced polymer) rebar, testing methods, tensile strength, grip system, CSA grip

1. 서 론

철근콘크리트 구조물은 재료적·시공적 요인 또는 엉 래나 측정 환경과 같은 환경요인에 의해 저숙적으로 손상이 발생하고 있으며, 이로 인해 구조물의 안전성과 수명이 크게 달라질 수 있으며, 이에 따라 많은 연구가 이루어지고 있다. 이에 따라 재질, 재료, 컨크리트의 속성 등 다양한 요인들로 인해 구조물의 안전성을 높일 수 있는 방법들에 대해 많은 연구가 이루어지고 있다. 하지만 그 중에서도 GFRP 보강재의 특성에 대한 연구가 많지 않은 실정이다.

국내에서도 보강재로 사용되는 재료로는 FRP 보강재와 구조재를 구분할 수 있으며, FRP 보강재는 신축성과 강성을 높이기 위해 사용되며, 구조재는 구조물의 안전성을 높이기 위해 사용된다. 또한, FRP 보강재는 일정한 구조물의 구조에 대한 요구를 충족시키기 위해 사용되며, 구조물의 설계에 있어 중요한 역할을 한다.

FRP 보강재는 보강재의 특성에 따라 구조물의 강도와 안전성을 높일 수 있는 방법들이 다양하다. 이에 따라 GFRP 보강재의 특성에 대한 연구가 필요하다. 이를 위해 본 연구에서는 GFRP 보강재의 특성에 대한 연구를 통해 보고하고자 한다.

*Corresponding author E-mail: yceyou@kict.re.kr
Received January 31, 2005, Accepted March 30, 2006
©2006 by Korea Concrete Institute
2. 인장시험용 그립(grip)의 종류 및 특성

2.1 CSA 그립

CSA (Canadian Standard Association) 규준에서 제안하는 인장시험용 그립(grip)은 Fig. 1에 나타낸 바와 같이 FRP 보강근을 강제의 실린더 속에 삽입하고 압축시 수직을 주밀하여 양상·경화시험으로써 보강근과 주입된 수지와의 접착력에 의해 인장시험을 하도록 제작되는 것을 특징으로 한다. 본 시험용 그립은 FRP 보강근과 내부 충전 수지와의 접착력이 충분할 경우에는 가장 양호하게 FRP 보강근의 인장강도를 구할 수 있는 장점이 있다. 그러나 수지의 충전작업이 용이하지 않으며, 수지의 양상을 위한 시간이 소요되어 제작이 번거롭다. 또한, 수지의 충전시 발생되는 기포 및 수지의 경화 후 수축으로 인한 공급으로 인하여 접착력이 충분히 발휘되지 않음 가능성이 높다. 더욱이 CSA 그립은 제작용이 근본적으로 불가능하여 비경제적인 단점이 있다. 공경 지름 12.7mm의 GFRP 보강근에 대한 CSA 그립의 형상 및 치수를 나타내면 Fig. 1과 같다.

2.2 ASTM 그립

ASTM (American Standard for Testing and Materials) 규준에서 제안하는 그립은 Fig. 2에서 보는 바와 같이 내부 면이 반원 형태로 가공된 한 쌍의 경화봉으로 FRP 보강근을 압착하여 고정하는 것을 특징으로 한다. 본 시험용 그립은 FRP 보강근이 시험기의 결합부에 의 해지력에 의해 시험시 극부적으로 파괴되는 것을 방지하기 위하여 알루미늄 링 형태로 제작된다. 또한, 그림 내부는 FRP 보강근과 그립의 접착용을 높이기 위해 스트레트라드 처리를 한다. 이와 같이, ASTM 그립은 설치 및 제작이 용이할 뿐만 아니라 재활용이 가능한 장점이 있다. 지름 12.7mm의 GFRP 보강근에 대한 그립의 형상을 나타내면 Fig. 2와 같다.

2.3 배기형 그립

배기형 그립은 주로 프리스트레스 강연선의 정착에 사용하는 것으로 Fig. 3에서 보는 바와 같이 외부 소켓과 내부 배기로 이루어져 있어 보강근에 대한 배기의 장점 작용으로 정착력을 확보하는 것을 특징으로 한다. 배기형 그립은 강연선 정착용 기성제품을 그대로 이용할 수 있어 구입 및 설치가 간편하며 가격도 경제적이지만 GFRP 보강근의 그립부위에서의 응력집중으로 인하여 조기파탄 현상이 예상된다. 공경 지름 12.7mm의 GFRP 보강근에 대한 배기형 그립의 형상 및 치수를 나타내면 Fig. 3과 같다.

3. GFRP 보강근의 인장특성 시험

3.1 GFRP 보강근

시험에 사용된 GFRP 보강근은 E-glass 섬유와 Vinyl Ester 수지로 구성된 제품을 신청하여, 외부 유형별로 구분하여 국내에서 자체 제작된 원형 GFRP 보강근, 미국
Table 1 Properties of GFRP rebar

<table>
<thead>
<tr>
<th>Composition</th>
<th>Fiber volume fraction (%)</th>
<th>Tensile strength (MPa)</th>
<th>Elastic modulus (GPa)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round</td>
<td>80.8</td>
<td>689</td>
<td>41.3</td>
<td>Domestic</td>
</tr>
<tr>
<td>Spiral</td>
<td>70.0</td>
<td>690</td>
<td>40.8</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Sandcoated</td>
<td>70.0</td>
<td>617</td>
<td>42.0</td>
<td>Canada</td>
</tr>
</tbody>
</table>

Fig. 4 Round GFRP rebar

Fig. 5 Spiral GFRP rebar

Fig. 6 Sand-coated GFRP rebar

H사의 나선형 GFRP 보강근 및 캐나다 C사의 규사코럽으로 표면 처리된 GFRP 보강근을 선정하였다. 실험에 사용한 GFRP 보강근은 모두 공정직경이 12.7 mm인 제품을 사용하였다. 선정된 GFRP 보강근의 물리적 특성은 Table 1과 같으며 각각의 형상은 Figs. 4-6과 같다.

3.2 GFRP 보강근 인장시험용 그립

본 서점에 사용된 인장그립은 각각 CSA 규준에서 제안하는 그립, ASTM 규준에서 제안하는 그립 및 프리스 트레스 강연의 정확에 주로 사용되는 패키형태의 그립을 선정하였다. 이하, 각각의 그립제작에 관하여 기술하면 다음과 같다.

3.2.1 CSA 그립

CSA 그립은 강재 실린더에 GFRP 보강근을 삽입한 후, 실린더의 내부에 일정화성 액체식 수지를 수직 방향으로 주입하여 제작하였다. 시험에 사용된 실린더는 두께 5 mm의 강재 실린더이며, 내경과 외경은 각각 25, 30 mm로 제작하였다. 수지의 주입순서는 한 쪽 단부의 그립에 액체식 수지를 충전하여 12시간 경과 후, 다른 쪽의 그립에 액체식 수지를 주입하여 양성하였다. 제작이 완료된 CSA 그립의 형상을 나타낸 Fig. 7과 같다.

CSA 그립의 최소길이, \(L_g = \frac{f_{u}A_g}{350} \) 이상으로 규정되어 있으므로, 본 연구에서 사용한 GFRP 보강근에 대하여 그립의 최소길이를 계산하여 나타낸 Table 2와 같다. 여기서 \(f_{u}A_g \)는 각각 측정한 인장강도 및 단면적이다. 본 시험에서는 제작한 편의를 위하여 모든 GFRP 보강근에 대하여 그립의 길이를 330 mm를 적용하였다.

3.2.2 ASTM 그립

ASTM 그립은 시험기와 맞물리는 부분에서의 압착으 로 인하여 시험이 파괴되는 것을 방지하기 위하여 강재

Fig. 7 Details of CSA grip

Table 2 Minimum length of CSA grip

<table>
<thead>
<tr>
<th>Minimum length</th>
<th>Round GFRP rebar</th>
<th>Spiral GFRP rebar</th>
<th>Sand-coated GFRP rebar</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_g = \frac{f_{u}A_g}{350})</td>
<td>249.24 mm</td>
<td>285.56 mm</td>
<td>227.41 mm</td>
</tr>
</tbody>
</table>

Fig. 8 Details of ASTM grip

GFRP 보강근의 인장강도 분석을 위한 시험방법 비교 연구 | 305
3.4 시험 및 측정방법

GFRP 보강근에 대한 인장강도, 인장탄성률 등의 인장 특성치에 대한 시험방법은 CSA S806-02 제안에 근거하여 실시하였다. GFRP 보강근에 대한 가격방법은 최대용량 1,000kN의 반동시험기 상·하부에 GFPR 보강근의 고정을 위한 고정장치를 설치하고 단조가속 방식으로 인장시험을 도입하였다. 하중 가속속도는 500 MPa/min으로 파단시까지 임의하게 가격하였습니다.

GFRP 보강근의 변형률을 측정하기 위해 시험편의 중앙부에 변형률 케이지(W.S.G)를 각각 2개 부착하였으며, Data Logger를 이용하여 연속적으로 기록·측정하였다. 1,000 kN 용량의 반동시험기에 인장시험을 설치한 모습을 나타내면 Fig. 10과 같다.

4. 시험결과 및 고찰

4.1 파괴 양상

4.1.1 CSA 그림 시험편

CSA 그림을 사용한 시험체는 강재 실린더 내부에 충진된 액체시수지가 GFRP 보강근과의 접착력에 의해 접착용을 하였을 때를 특정하고 있다. 이에 따라 원형 GFRP 보강근의 경우는 볼드하운 표면과 충분한 접착용을 확보하지 못한 관계로 인하여 모든 시험편에 있어서 100 MPa 내외의 낮은 인장력을에서 슬럼이 발생되었다. 이에 대하여 나선형 GFRP 보강근의 경우도 원형 GFRP의 경우와 유사하게 대부분의 시험편에서 슬럼이 발생되었으나 원형 GFRP가 100 MPa의 내외의 인장력을에서 슬럼이 발생한 것은 달리, 650 MPa의 인장력을 상회하는 수준에서 그림의 상단부에서 슬럼이 발생되는 것으로 나타났다. 또한 일부 시험체에서는 파괴를 유도할 만큼의 충분한 접착력을 보이게 하였다.

한편, 모래분사상 GFRP의 경우는 10개의 시험편 중에서 1개만 파괴되고 나머지의 경우 모두 외피가 파괴되는 현상이 나타났다. 특히, 일부 바리가 발생된 시험체에서는 외피의 일부가 훼손되면서 내부코어외 외피부분이 분리되는 현상이 관찰되었다. 이는 모래분사된 GFRP 표면에 액체시수지가 불순물개로 침투되어 GFRP에 대한 접착력이 불균등하게 있던 것에 기인하는 것으로 판단되며, 이에 불균등한 응력의 분포로 인하여 외피의 HFRP 를 감싸고 있던 모래분사형 외피의 내부적으로 큰 응력 집중이 발생되었기 때문인 것으로 사료된다. CSA 그림을 사용한 각 인장강도 시험편의 최종파괴 형상을 나타내면 Fig. 11과 같다.

4.1.2 ASTM 그림 시험편

ASTM 그림을 사용한 시험체는 그림과 GFRP 보강근의 기계적 마찰력으로 인하여 모든 시험체에서 파괴를 유도할 정도의 충분한 접착력이 발생되는 것으로 나타났
4.1.3 폐기형 그립 시험판
폐기형 그립을 사용한 시험체의 경우도 폐기의 장부작용으로 인하여 GFRP 보강근의 파단을 유도할 정도의 충분한 정작내력을 기대할 수 있으나, Fig. 13에서 보는 바와 같이 그립부위에서의 지나친 응력집중으로 인하여 모든 시험체에서 극부적인 파괴현상이 나타나는 것으로 관측되었다. 특히 일부 시험체에서는 그립부위에서의 부분적인 격임현상은 관측되는 동, 국부적인 응력집중 현상이 지나치게 큰 것으로 관측되어 인정강도 시험용 그립으로서는 부적절한 것으로 사료한다. 폐기형 그립을 사용한 각 인정강도 시험판의 최종파괴 형상을 나타내면 Fig. 13과 같다.

4.2 인정강도 특성치
4.2.1 환형 GFRP 보강근
환형 GFRP 보강근에 대하여 그립의 종류를 달리하면서 얻어진 인정강도 특성치를 기준치와 비교하여 나타내다. 그림과 같이 인정강도 시험체의 최종파괴 형상을 나타내면 Fig. 12와 같다.

![Fig. 12 Failure of GFRP rebar with ASTM grip](image)

<table>
<thead>
<tr>
<th>Table 3 Summary of test results of round-type GFRP rebar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec.</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>CSA grip</td>
</tr>
<tr>
<td>ASTM grip</td>
</tr>
<tr>
<td>Wedge-type grip</td>
</tr>
</tbody>
</table>

GFRP 보강근의 인정강도 분석을 위한 시험방법 비교 연구 | 307
Table 4 Test results of round-type GFRP rebar

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Tensile strength (MPa)</th>
<th>Elongation (%)</th>
<th>Elastic Modulus (GPa)</th>
<th>Failure pattern</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1*</td>
<td>116.10</td>
<td>0.255</td>
<td>-</td>
<td>Slip</td>
<td>1st trial</td>
</tr>
<tr>
<td>CR2</td>
<td>116.10</td>
<td>0.255</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR3</td>
<td>52.11</td>
<td>0.067</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR4</td>
<td>128.49</td>
<td>0.244</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR5</td>
<td>91.34</td>
<td>0.150</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR1**</td>
<td>1044.94</td>
<td>2.568</td>
<td>40.1</td>
<td>Fracture</td>
<td></td>
</tr>
<tr>
<td>AR2</td>
<td>977.60</td>
<td>2.150</td>
<td>46.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR3</td>
<td>928.06</td>
<td>1.990</td>
<td>41.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR4</td>
<td>988.44</td>
<td>2.205</td>
<td>42.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR5</td>
<td>1022.50</td>
<td>2.150</td>
<td>45.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR6</td>
<td>924.20</td>
<td>1.950</td>
<td>38.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR7</td>
<td>1042.62</td>
<td>2.115</td>
<td>49.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR8</td>
<td>985.34</td>
<td>2.207</td>
<td>37.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR9</td>
<td>921.10</td>
<td>1.900</td>
<td>48.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR10</td>
<td>996.95</td>
<td>2.207</td>
<td>37.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR1***</td>
<td>482.22</td>
<td>1.120</td>
<td>43.1</td>
<td>Fracture</td>
<td>1st trial</td>
</tr>
<tr>
<td>WR2</td>
<td>560.40</td>
<td>1.171</td>
<td>45.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR3</td>
<td>503.12</td>
<td>1.187</td>
<td>42.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR4</td>
<td>507.76</td>
<td>1.228</td>
<td>41.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR5</td>
<td>513.18</td>
<td>1.052</td>
<td>40.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR6</td>
<td>526.34</td>
<td>1.087</td>
<td>45.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR7</td>
<td>547.24</td>
<td>1.145</td>
<td>49.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR8</td>
<td>553.43</td>
<td>1.164</td>
<td>36.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR9</td>
<td>529.44</td>
<td>1.168</td>
<td>40.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR10</td>
<td>500.02</td>
<td>1.000</td>
<td>43.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*CR : Round-type GFRP rebar with CSA grip adaptor
**AR : Round-type GFRP rebar with ASTM grip adaptor
***WR : Round-type GFRP rebar with Wedge type grip adaptor

Table 5 Summary of test results of spiral GFRP rebar

<table>
<thead>
<tr>
<th>Tensile strength (MPa)</th>
<th>Elastic modulus (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec.</td>
<td>Test</td>
</tr>
<tr>
<td>CSA grip</td>
<td>-</td>
</tr>
<tr>
<td>ASTM grip</td>
<td>690</td>
</tr>
<tr>
<td>Wedge-type grip</td>
<td>-</td>
</tr>
</tbody>
</table>

4.2.2 나선형 GFRP 보강근

CSA 그룹을 사용한 나선형 GFRP 보강근 시험체에서도 원형 GFRP의 경우와 유사하게 대부분의 시험체에서 슬립파괴가 발생하였다. 그러나 원형 GFRP가 100 MPa 내외의 인장응력에서 슬립이 발생한 것과는 달리, 650 MPa의 인장응력에서 슬립이 발생하였다. 이에 대하여 ASTM 그룹을 사용한 경우는 Table 5에서 보는 바와 같이 인장강도와 탄성계수에 대한 평균치가 규격치에 비하여 각각 4%, 10% 정도 낮은 669.20 MPa, 37.00 GPa를 나타내었다. 또한, 폐기형 그룹을 사용한 경우는 인장강도가 432.26 MPa 정도로서, CSA 그룹과 ASTM 그룹을 이용하여 측정한 인장강도의 67%, 64% 값을 나타내었다. 따라서, 폐기형 그룹을 이용하는 방법은 FRP 보강근의 인장강도 특성을 평가하는 방법으로는 매우 부적절할 것으로 사료된다.

4.2.3 모래분사형 GFRP 보강근

CSA 그룹을 사용한 모래분사형 GFRP 보강근 시험체에서는 10개의 시험 중에서 1개만 파단되고 나머지의 경우 모두 외피가 깨지는 현상이 관찰되어 측정된 인장강도 특성을 적절히 평가하지 못하는 것으로 나타났다. 그러나 파단이 발생된 시험체의 인장강도는 714.8 MPa로서 가장 높은 값을 보이고 있다. 이에 대하여 ASTM 그룹을 이용하여 얻은 평균 인장강도는 제조회사에서 제시하는 617 MPa의 규격치를 상회하는 660.93 MPa의 값을 나타내는 것으로 나타났다.

아울러, 폐기형의 그룹을 사용한 시험체의 경우에는
Table 6 Test results of spiral GFRP rebar

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Tensile strength (MPa)</th>
<th>Elongation (%)</th>
<th>Elastic Modulus (GPa)</th>
<th>Failure pattern</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1*</td>
<td>720.02</td>
<td>2.33</td>
<td>47.9</td>
<td>Fracture</td>
<td>2nd trial</td>
</tr>
<tr>
<td>CS2</td>
<td>414.34</td>
<td>1.825</td>
<td>40.7</td>
<td>slip</td>
<td>1st trial</td>
</tr>
<tr>
<td>CS3</td>
<td>719.18</td>
<td>2.12</td>
<td>48.9</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>CS4</td>
<td>682.22</td>
<td>2.11</td>
<td>44.1</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>CS5</td>
<td>669.12</td>
<td>1.827</td>
<td>34.8</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>CS6</td>
<td>671.15</td>
<td>2.088</td>
<td>32.8</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>CS7</td>
<td>674.53</td>
<td>1.969</td>
<td>37.8</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>CS8</td>
<td>596.05</td>
<td>1.622</td>
<td>38.9</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>CS9</td>
<td>698.22</td>
<td>1.934</td>
<td>36.5</td>
<td>Fracture</td>
<td></td>
</tr>
<tr>
<td>AS1**</td>
<td>710.39</td>
<td>2.554</td>
<td>32.8</td>
<td>Fracture</td>
<td></td>
</tr>
<tr>
<td>AS2</td>
<td>646.50</td>
<td>1.675</td>
<td>38.6</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>AS3</td>
<td>676.56</td>
<td>1.753</td>
<td>37.9</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>AS4</td>
<td>663.03</td>
<td>-</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>AS5</td>
<td>649.50</td>
<td>1.674</td>
<td>38.7</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>AS6</td>
<td>677.24</td>
<td>1.532</td>
<td>44.2</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>AS7</td>
<td>690.10</td>
<td>1.775</td>
<td>38.5</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>AS8</td>
<td>691.45</td>
<td>1.774</td>
<td>39.2</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>AS9</td>
<td>642.74</td>
<td>1.656</td>
<td>38.8</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>AS10</td>
<td>696.80</td>
<td>1.663</td>
<td>37.8</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>WS1***</td>
<td>439.77</td>
<td>1.010</td>
<td>46.4</td>
<td>Fracture</td>
<td>1st trial</td>
</tr>
<tr>
<td>WS2</td>
<td>453.29</td>
<td>1.050</td>
<td>43.2</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>WS3</td>
<td>412.70</td>
<td>0.98</td>
<td>41.5</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>WS4</td>
<td>405.93</td>
<td>0.99</td>
<td>41.0</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>WS5</td>
<td>429.62</td>
<td>1.043</td>
<td>38.0</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>WS6</td>
<td>460.06</td>
<td>1.110</td>
<td>41.4</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>WS7</td>
<td>433.00</td>
<td>1.063</td>
<td>35.7</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>WS8</td>
<td>430.29</td>
<td>1.16</td>
<td>35.7</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>WS9</td>
<td>408.64</td>
<td>1.16</td>
<td>35.2</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>WS10</td>
<td>399.17</td>
<td>1.07</td>
<td>37.3</td>
<td>"</td>
<td></td>
</tr>
</tbody>
</table>

CS : Spiral GFRP rebar with CSA grip adaptor
AS : Spiral GFRP rebar with ASTM grip adaptor
WS : Spiral GFRP rebar with Wedge type grip adaptor

CSA 그림과 ASTM 그림으로 측정한 인장 강도에 대하여 각각 62%, 67% 정도의 값을 나타내어 나선형 GFRP 보강근의 경우와 같이 인장특성치 시험에는 부적절한 것으로 파악되었다.

4.3 응력-변형률 곡선

GFRP 보강근의 중앙부 표면에 부착된 W.S.G로부터 얻어진 변형률 값을 이용하여 대표적인 GFRP 보강근의 응력-변형률 관계를 나타내면 Fig. 14과 같다. 그래프에서 보는 바와 같이 그림의 종류에 따라 최대인장강도 값이 다르게 계측되는 것을 알 수 있다.

즉, CSA 그림은 사용하여 구한 나선형 GFRP 보강근의 파단시 인장강도는 ASTM 및 독기형 그림에 의한 인장강도와 비교하여 각각 동등하거나 63% 정도 큰 경향을 나타내었으며, 모래부사형 GFRP의 경우는 각각 8% 및 54% 정도 큰 값을 나타내고 있다. 이는 CSA 그림이 GFRP 보강근의 그립부분에서 구부력에 의한 응력집중을 완화할 수 있기 때문인 것으로 판단된다. 그러나 나선형 GFRP 보강근은 관측된 파와 같이 4개의 시험체에서 총전체의 주립부위로 인한 슬립파괴가 발생되어, 그림 제작시 특별한 주의가 필요한 것으로 사료된다. 이에 대하여, ASTM 그림에 의한 방법은 CSA 그림을 사용하였을 경우보다 모래부사형 GFRP 보강근의 경우 일부 작은 값을 나타내고 있지만, 예측치 수치의 총합량과 비가 상호들어져서 시간절약 및 제작의 번거로움이 없는 장점이 기대된다. 한편, 독기형그림은 모든 시험체에

Table 7 Summary of test results of sand-coated GFRP rebar

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Tensile strength (MPa)</th>
<th>Elastic modulus (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec.</td>
<td>Test</td>
<td>Spec.</td>
</tr>
<tr>
<td>CSA grip</td>
<td>-</td>
<td>714.87</td>
</tr>
<tr>
<td>ASTM grip</td>
<td>617</td>
<td>660.93</td>
</tr>
<tr>
<td>Wedgetype grip</td>
<td>-</td>
<td>443.81</td>
</tr>
</tbody>
</table>

GFRP 보강근의 인장강도 분석을 위한 시험방법 비교 연구 | 309
Table 8 Test results of sand-coated GFRP rebar

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Tensile strength (MPa)</th>
<th>Elongation (%)</th>
<th>Elastic Modulus (GPa)</th>
<th>Failure pattern</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1*</td>
<td>685.24</td>
<td>1.163</td>
<td>41.7</td>
<td>Debond</td>
<td>2nd trial</td>
</tr>
<tr>
<td>CC2</td>
<td>381.65</td>
<td>1.016</td>
<td>37.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC3</td>
<td>379.70</td>
<td>0.910</td>
<td>38.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC4</td>
<td>227.83</td>
<td>0.197</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC5</td>
<td>417.15</td>
<td>1.091</td>
<td>33.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC7</td>
<td>537.10</td>
<td>1.276</td>
<td>42.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC8</td>
<td>255.26</td>
<td>0.281</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC9</td>
<td>338.82</td>
<td>0.640</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC10</td>
<td>714.87</td>
<td>1.610</td>
<td>44.4</td>
<td>Fracture</td>
<td>1st trial</td>
</tr>
<tr>
<td>AC1**</td>
<td>645.74</td>
<td>1.534</td>
<td>42.1</td>
<td>Fracture</td>
<td></td>
</tr>
<tr>
<td>AC2</td>
<td>668.53</td>
<td>1.622</td>
<td>41.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC3</td>
<td>698.91</td>
<td>1.676</td>
<td>39.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC4</td>
<td>622.95</td>
<td>1.395</td>
<td>42.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC5</td>
<td>668.53</td>
<td>1.345</td>
<td>44.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC1***</td>
<td>440.62</td>
<td>0.760</td>
<td>44.1</td>
<td>Fracture</td>
<td>1st trial</td>
</tr>
<tr>
<td>WC2</td>
<td>448.22</td>
<td>1.069</td>
<td>41.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC3</td>
<td>395.04</td>
<td>0.889</td>
<td>43.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC4</td>
<td>469.49</td>
<td>1.066</td>
<td>44.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC5</td>
<td>465.69</td>
<td>1.111</td>
<td>41.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC6</td>
<td>477.85</td>
<td>1.055</td>
<td>42.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC7</td>
<td>461.89</td>
<td>1.071</td>
<td>40.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC8</td>
<td>457.33</td>
<td>1.055</td>
<td>40.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC9</td>
<td>466.45</td>
<td>1.042</td>
<td>44.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC10</td>
<td>492.28</td>
<td>1.046</td>
<td>46.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*CC : Sand-coated GFRP rebar with CSA grip adaptor
**AC : Sand-coated rebar with ASTM grip adaptor
***WC : Sand-coated rebar with Wedge-type grip adaptor

서 그립 주위의 응력 집중에 기인하는 극부적인 파편이 발생되면서 설계기준강도의 약 65% 정도의 작은 값을 나타내어 인장강도 특성치를 재대로 규명할 수 없는 것으로 판단되었다.

4.4 ASTM 그림의 개선

4.4.1 기존 그립의 특성 분석

본 연구에서 시험대상으로 선정한 GFRP 보강근의 종류 및 그립 유형별 인장시험 결과를 토대로 현행 GFRP 보강근의 인장시험법에 사용되는 그립의 특성에 대하여 요약하면 다음과 같다.

CSA 그립은 GFRP 보강근의 인장강도 발현 측면에서 가장 우수한 것으로 나타났지만, 그립 제작시 예측시 충전 및 양생에 따른 변곡모양이 있을 뿐만 아니라 GFRP 보강근의 표면이 매끄럽거나 예측시 수직이 채울이 불량할 경우에는 GFRP 보강근의 적정 인장강도 발현을 기대할 수 없는 단점이 있다. 또한 한번 사용된 그립은 재 사용이 불가능하여 경제성 측면에서도 불리하다. 이에 대하여 제4형 그립은 강진의 정착에 사용되는 가성제품을 그대로 사용한 것으로 사용성 및 경제성 측면에서 가장 우수하지만, 그립부위에서 집중되는 응력을 적절히 분산시키기 못하여 규격 인장강도의 약 50~60% 범위에서 조기 파단되는 것으로 나타났다. 따라서 제3형 그립은 GFRP 보강근의 인장강도 시험에 적용할 수 없을 것으로 판단된다.

한편, ASTM 그립은 한 장의 알루미늄 테이프 형태로 제작되므로 사용성이 뛰어나고, 재활용할 수 있어 경제적이다. 또한 GFRP 보강근의 인장강도 발현 측면에 있어도 CSA 그립에 의한 시험결과에 근거하는 시험결과를 나타내었다. 따라서 본 연구에서는 경제성 및 사용성 측면에서 우수한 ASTM 그립을 근간으로 하여 기존의 단점을 개선하기 위한 추가적인 연구를 계획하였다.

4.4.2 ASTM 그립의 도입

현행 ASTM 그립의 형상 및 저수는 동일한 공정 지름을 갖는 모든 GFRP 보강근에 대하여 동일한 규격을 제한하고 있다. 그러나 동일한 공정적격으로 생산된 제품 일부라도 각 제조회사별로 실제 적정의 차이가 있는 것으로 파악되고 있다. 이에 따라 V자형 체(jaw)의 정착부용에 의해 인장시험관이 고정되는 UTM을 사용하여 ASTM 그립을 고정하면, GFRP 보강근의 지름과 반구형 내부 홈의 지름 차이, 즉 GFRP 보강근의 지름방향 변형량 만큼 보강근에 압축력이 가해질 것으로 예상된다. 여
기시 지름 방향 변형량에 의해 유도되는 GFRP 보강근의 고정력, 즉 마찰력이 보강근의 장단내력보다 작을 경우에는 GFRP 보강근의 장단파괴 이전에 슬립이 발생하지만, 고정력이 지나치게 증가되있으면 그립 내부에서 GFRP 보강근의 극한적인 압축파괴를 일으킬 가능성이 있다. 따라서, GFRP 보강근의 종류별로 적정 그립의 내부직경을 도출해내는 방법에 의해 ASTM 그립을 최적화할 수 있을 것으로 판단된다.

이와 같은 분석에 따라 본 연구에서는 그립별 성능 비교시험에 사용한 공정직경 12.7 mm, 실제 직경 14 mm의 모래분사형 GFRP 보강근에 대하여 반구형 내부 홈 직경에 따른 장단시험을 실시하였다. ASTM 그립의 내부 홈 직경에 따른 GFRP 보강근의 평균 장단응력의 분포를 나타내면 Fig.15와 같다.

Fig. 15에서 보는 바와 같이 모래분사형 GFRP 보강근은 실제 직경 14 mm보다 0.2 mm 작은 내부 홈 직경 13.8 mm의 그립에 대하여는 가해진 압축력에 의하여 유도된 변형량이 커 슬립이 발생하였다. 그러나 내부 홈 직경 13.6 mm부터는 757 MPa 정도의 장단응력을 벌현하다가 내부 홈 직경 13.2~13.8 mm의 구간에서는 831~846 MPa로 장단응력이 증가하는 분포를 나타내었다. 그러나 점점 내부 홈 직경이 감소됨에 따라 그립과 GFRP 보강근의 마찰력이 지나치게 증가되면서 점점 장단응력이 감소하는 분포를 나타내었다.

따라서 모래분사형 GFRP 보강근의 경우는 실제 직경보다 약 1.0 mm 정도 작은 크기로 ASTM 그립의 내부 홈 직경을 형성할 경우 가장 큰 장단강도가 일어나는 것을 확인할 수 있었으며, 이와 같은 방법에 의해 GFRP 보강근의 특성 특성에 부합하는 ASTM 그립의 내부 홈 직경을 최적화할 수 있을 것으로 판단된다.

5. 결론

1) GFRP 보강근의 장단강도는 시험대상으로 설정한 그립의 종류 및 외피형태별로 시험결과가 각기 상이한 경향을 나타내고 있다. 따라서, GFRP 보강근의 장단강도 특성 분석을 위해서는 보강근의 특
성에 부합되는 적정 그립 시스템의 개발이 요구된다.

2) CSA 그립을 이용하여 구한 나선형 및 모래부식형 GFRP 보강근의 파단시 인장값도는 ASTM 그립에 의한 평균인장값도와 비교하여 각각 동등하거나 10% 정도 증가하는 경향을 나타내고 있다.

3) ASTM 그립은 CSA 그립방식에 비하여 일부 작은 값을 나타내고 있지만, 예측치 수치의 충진양상과 경은 생략할 수 있어 시간절약 및 제작의 번거로움이 없는 장점이 기대된다.

4) 폐기형 그립은 기성제품을 그대로 사용할 수 있어 사용성 및 경제성이 뛰어난 것으로 판단되지만, 그 립부위에서의 급격한 응력집중현상으로 인하여 인장강도 규격치의 약 50~60% 범위에서 파손되는 것으로 나타났다. 따라서, GFRP 보강근의 인장강도 특성치 분석에는 부적절한 것으로 판단된다.

5) 현행 ASTM 그립에 대하여 각각의 GFRP 보강근의 외피 특성에 부합하여 슬립이 발생하지 않는 범위 내에서 가능한 작은 압축응력을 유발할 수 있는 적절한 ASTM 그립을 제안할 수 있을 것으로 판단된다.

감사의 글
본 논문은 공공기술연구회의 2004년도 정책연구사업인 “FRP 복합재료 보강재 개발 및 이를 활용한 콘크리트 구조물 건설기술 개발” 지원에 의하여 연구되었으며 관계 제외에 깊은 감사를 드립니다.

참고문헌

요약 본 연구에서는 GFRP 보강근의 인장특성치 시험을 위한 그립 시스템의 적합성을 검증하기 위하여 캐나다 규준에서 제안하는 그립 (CSA 그립), ASTM에서 제안하는 그립 (ASTM 그립) 및 프리스트레싱 강연선의 적합에 일반적으로 사용되는 폐기형 그립 등을 사용하여 GFRP 보강근의 인장특성치 시험을 실시하였다. 또한, 국내외 외국에서 사용화하고 있는 대표적인 2종의 GFRP 보강근(나선형 GFRP 보강근, 모래부식형 GFRP 보강근) 및 국내에서 자체 제작한 원형 GFRP 보강근을 대상으로하여 인장특성치 분석을 위한 실험을 실시하고 각각의 제안된 그립의 적용성을 여부를 검토하였다. 본 시험에 사용된 시험비의 재가, 가락 및 충진장치의 설치 등은 CSA S806-02에서 제안하는 권고사항에 따라 실시하였다. 외국의 사용화된 GFRP 보강근에 대하여 그립의 종류를 담화하여 실시된 본 시험결과에 의하면, CSA 그립을 사용하여 시험된 GFRP 보강근의 인장강도가 가장 높은 값을 보이는 것으로 나타났다. 그러나 ASTM 그립을 사용한 시험비에서 관찰되는 강도저하 현상은 CSA 그립을 사용한 시험비에 비하여 약 10% 미만으로 관측되었다. 한편, CSA 그립은 제작공정이 까다로운 뿐만 아니라 제작비용이 불가능하며 경제성 측면에서도 불리한 것으로 파악되었다. 따라서, 실험적인 측면에서 관찰하면 GFRP 보강근의 인장시험에서는 ASTM 그립이 적합한 것으로 판단된다.

핵심용어 GFRP (glass fiber reinforced polymer) 보강근, 시험방법, 인장강도, 그립 시스템, CSA 그립

312 | 한국콘크리트학회 논문집 제18권 제3호 (2006)