DOI QR코드

DOI QR Code

Association of the A-G Polymorphism in Porcine Adiponectin Gene with Fat Deposition and Carcass Traits

  • Dai, L.H. (Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science Huazhong Agricultural University) ;
  • Xiong, Y.Z. (Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science Huazhong Agricultural University) ;
  • Deng, C.Y. (Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science Huazhong Agricultural University) ;
  • Jiang, S.W. (Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science Huazhong Agricultural University) ;
  • Zuo, B. (Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science Huazhong Agricultural University) ;
  • Zheng, R. (Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science Huazhong Agricultural University) ;
  • Li, F.E. (Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science Huazhong Agricultural University) ;
  • Lei, M.G. (Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science Huazhong Agricultural University)
  • 투고 : 2005.09.05
  • 심사 : 2005.12.09
  • 발행 : 2006.06.01

초록

The adiponectin gene is known to be involved in the regulation of energy homeostasis involving food intake, carbohydrate and lipid metabolism. Human adiponectin gene polymorphisms have been recently reported to be associated with obesity, insulin sensitivity and the risk of type 2 diabetes. The present study was carried out to investigate the porcine adiponectin gene as a candidate gene for fat deposition and carcass traits. A mutation of A178G of the porcine adiponectin gene that resulted in substitution of the amino acid Isoleucine to Valine was identified. AcyI PCR-RFLP was used to detect the polymorphism of the genotypes in five different pig populations (Large White, Landrace, Duroc, Chinese breeds Meishan and Qingping). The A allele frequency was significantly higher among subjects from Chinsese lard type breeds, while the G allele was the only one present in those from Western lean type breeds. To determine if there was an association of the polymorphism with phenotypic variation, the mutation was tested in 267 pigs of the "Large $White{\times}Meishan$" F2 resource population. The results of association analyses showed significant associations of the genotypes with fat deposition and carcass traits. Allele G was significantly associated with increase in loin eye height, loin eye area and lean meat percentage and bone percentage, and decrease in fat mean percentage, ratio of lean to fat, shoulder fat thickness, 6-7 rib fat thickness, thorax-waist fat thickness and buttock fat thickness. The substitution of A178G (Ile60Val) happened to be located at amino acid 60 in the collagenous domain of porcine adiponectin which might affect the association into higher-order structures, and accordingly affect the posttranslational modifications and optimal biological activity of the multimeric forms. The identified functional polymorphism provides new evidence of adiponectin as an important candidate gene affecting fat deposition and carcass traits in pigs.

키워드

참고문헌

  1. Arita, Y., S. Kihara, N. Ouchi, M. Takahashi, K. Maeda, J. Miyagawa, K. Hotta, I. Shimomura, T. Nakamura, K. Miyaoka, H. Kuriyama, M. Nishida, S. Yamashita, K. Okubo, K. Matsubara, M. Muraguchi, Y. Ohmoto, T. Funahashi and Y. Matsuzawa. 1999. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257:79-83 https://doi.org/10.1006/bbrc.1999.0255
  2. Berg, A. H., T. P. Combs and P. E. Scherer. 2002. Acrp30/ adiponectin: an adipocytokine regulating glucose and lipid metabolism. Trends Endocrinol. Metabolism. 13:84-89 https://doi.org/10.1016/S1043-2760(01)00524-0
  3. Chandran, M., S. A. Phillips, T. Ciaraldi and R. R. Henry. 2003. Adiponectin: More Than Just Another Fat Cell Hormone? Diabetes Care. 26:2442-50 https://doi.org/10.2337/diacare.26.8.2442
  4. Fumeron, F., R. Aubert, A. Siddiq, D. Betoulle, F. Pean, S. Hadjadj, J. Tichet, E. Wilpart, M. C. Chesnier, B. Balkau, P. Froguel and M. Marre for the Epidemiologic Data on the Insulin Resistance Syndrome (DESIR) Study Group. 2004. Adiponectin gene polymorphisms and adiponectin levels are independently associated with the development of hyperglycemia during a 3- year period: the epidemiologic data on the insulin resistance syndrome prospective study. Diabetes 53:1150-1157 https://doi.org/10.2337/diabetes.53.4.1150
  5. Hu, E., P. Ling and B. M. Spigelman. 1996. AdipoQ is a novel adipose specific gene dysregulated in obesity. J. Biol. Chem. 271:10697-10703 https://doi.org/10.1074/jbc.271.18.10697
  6. Jacobi, S. K., K. M. Ajuwon, T. E. Weber, J. L. Kuske, C. J. Dyer and M. E. Spurlock. 2004. Cloning and expression of porcine adiponectin, and its relationship to adiposity, lipogenesis and the acute phase response. J. Endocrinol. 182:133-144 https://doi.org/10.1677/joe.0.1820133
  7. Kissebah, A. H., G. E. Sonnenberg, J. Myklebust, M. Goldstein, K. Broman, R.G. James, J. A. Marks, G. R. Krakower, H. J. Jacob, J. Weber, L. Martin, J. Blangero and A. G. Comuzzie. 2000. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc. Natl. Acad. Sci. USA. 97:14478-14483
  8. Liu, B. H. 1998. Statistical Genomics: Linkage, Mapping and QTL Analysis. CRC Press LLC. Boca Raton. pp. 404-409
  9. Maeda, K., K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa and K. Matsubara. 1996. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (Adipose Most abundant Gene transcript 1). Biochem Biophys. Res. Commun. 221:286-289 https://doi.org/10.1006/bbrc.1996.0587
  10. Nakano, Y., T. Tobe, N. H. Choi-Miura, T. Mazda and M. Tomita. 1996. Isolation and characterization of GBP28, a novel gelatinbinding protein purified from human plasma. J. Biochem. 120:803-812 https://doi.org/10.1093/oxfordjournals.jbchem.a021483
  11. Ouchi, N., S. Kihara, Y. Arita, K. Maeda, H. Kuriyama, Y. Okamoto, K. Hotta, M. Nishida, M. Takahashi, T. Nakamura, S. Yamashita, T. Funahashi and Y. Matsuzawa. 1999. Novel modulator for endothelial adhesion molecules: adipocyte derived plasma protein adiponectin. Circulation. 100:2473-2476 https://doi.org/10.1161/01.CIR.100.25.2473
  12. Perusse, L., T. Rankien, A. Zuberi, Y. Chagnon, S. J. Weisnagel, G. Argyropoulos, B. Walts and E. E. Bouchard. 2005. The human obesity gene map: the 2004 update. Obesity Res. 13:381-490 https://doi.org/10.1038/oby.2005.50
  13. Smbrook, J. and D. Russell. 2001. Molecular Cloning: A Laboratry Manual. 3rd Ed. Cold Spring Harbor Laboratory Press, New York
  14. Saito, K., T. Tobe, S. Minoshima, S. Asakawa, J. Sumiya, M. Yoda, Y. Nakano, N. Shimizu and M. Tomita. 1999. Organization of the gene for gelatin-binding protein (GBP28). Gene. 229:67-73 https://doi.org/10.1016/S0378-1119(99)00041-4
  15. Scherer, P. E., S. Williams, M. Fogliano, G. Baldini and H. F. Lodish. 1995. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270:26746-26749 https://doi.org/10.1074/jbc.270.45.26746
  16. Stumvoll, M., O. Tschritter, A. Fritsche, H. Staiger, W. Renn, M. Weisser, F. Machicao and H. Haring. 2002. Association of the T-G Polymorphism in Adiponectin (Exon 2) With Obesity and Insulin Sensitivity. Diabetes. 51:37-41 https://doi.org/10.2337/diabetes.51.2007.S37
  17. Takahashi, M., Y. Arita, K. Yamagata, Y. Matsukawa, K. Okutomi, M. Horie, I. Shimomura, K. Hotta, H. Kuriyama, S. Kihara, T. Nakamura, S. Yamashita, T. Funahashi and Y. Matsuzawa. 2000. Genomic structure and mutations in adipose-specific gene, adiponectin. Int. J. Obes. Relat. Metab. Disord. 24:861- 868 https://doi.org/10.1038/sj.ijo.0801244
  18. Xiong, Y. Z. and C. Y. Deng. 1999. Principle and method of swine testing. Chinese Agriclulture Press, Beijing
  19. Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, Y. Mori, T. Ide, K. Murakami, N. Tsuboyama-Kasaoka, O. Ezaki, Y. Akanuma, O. Gavrilova, C. Vinson, M. L. Reitman, H. Kagechika, K. Shudo, M. Yoda, Y. Nakano, K. Tobe, R. Nagai, S. Kimura, M. Tomita, P. Froguel and T. Kadowaki. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7:941-946 https://doi.org/10.1038/90984
  20. Yang, W. S., P. L. Tsou, W. J. Lee, D. L. Tseng, C. L. Chen, C. C. Peng, K. C. Lee, M. J. Chen, C. J. Huang, T. Y. Tai and L. M. Chuang. 2003. Allele-specific differential expression of a common adiponectin gene polymorphism related to obesity. J. Mol. Med. 81:428-434 https://doi.org/10.1007/s00109-002-0409-4

피인용 문헌

  1. Characterization of swine adiponectin and adiponectin receptor polymorphisms and their association with reproductive traits vol.39, pp.3, 2008, https://doi.org/10.1111/j.1365-2052.2008.01714.x
  2. gene and its association with carcass traits vol.39, pp.4, 2008, https://doi.org/10.1111/j.1365-2052.2008.01740.x
  3. The novel 5bp deletion polymorphism in the promoter region of bovine ACRP30 gene vol.36, pp.5, 2009, https://doi.org/10.1007/s11033-008-9260-1
  4. Novel Polymorphism at the 3′ UTR of the Caprine Adiponectin Gene vol.47, pp.3-4, 2009, https://doi.org/10.1007/s10528-009-9223-9
  5. Molecular characterization, expression profile and association analysis with fat deposition traits of the porcine APOM gene vol.37, pp.3, 2010, https://doi.org/10.1007/s11033-009-9518-2
  6. ) gene are presumably associated with transcription level and carcass traits in pigs vol.44, pp.3, 2012, https://doi.org/10.1111/j.1365-2052.2012.02397.x
  7. Identification of a Novel Mutation Within the Goat Adiponectin Gene and Its Effect on Body Weight in Chinese Indigenous Breeds vol.50, pp.1-2, 2012, https://doi.org/10.1007/s10528-011-9474-0
  8. Associations between single nucleotide polymorphisms in 33 candidate genes and meat quality traits in commercial pigs vol.45, pp.4, 2014, https://doi.org/10.1111/age.12155
  9. Haplotypes of the Ovine Adiponectin Gene and Their Association with Growth and Carcass Traits in New Zealand Romney Lambs vol.8, pp.6, 2017, https://doi.org/10.3390/genes8060160
  10. Haplotypes and Sequence Variation in the Ovine Adiponectin Gene (ADIPOQ) vol.6, pp.4, 2015, https://doi.org/10.3390/genes6041230
  11. Diversity across major and candidate genes in European local pig breeds vol.13, pp.11, 2018, https://doi.org/10.1371/journal.pone.0207475
  12. Differential characterization of myogenic satellite cells with linolenic and retinoic acid in the presence of thiazolidinediones from prepubertal Korean black goats vol.31, pp.3, 2018, https://doi.org/10.5713/ajas.17.0257
  13. Full-length cDNA, Expression Pattern and Association Analysis of the Porcine FHL3 Gene vol.20, pp.10, 2006, https://doi.org/10.5713/ajas.2007.1473
  14. ASCL2 Gene Expression Analysis and Its Association with Carcass Traits in Pigs vol.20, pp.10, 2006, https://doi.org/10.5713/ajas.2007.1485
  15. Effect of Dietary Conjugated Linoleic Acid (CLA) on Abdominal Fat Deposition in Yellow-feather Broiler Chickens and Its Possible Mechanism vol.21, pp.12, 2006, https://doi.org/10.5713/ajas.2008.80165
  16. Isolation, Expression Pattern, Polymorphism and Association Analysis of Porcine TIAF1 Gene vol.22, pp.3, 2009, https://doi.org/10.5713/ajas.2009.80400
  17. Effects of Porcine Adiponectin Ggene Polymorphismin the 5^|^prime;-Flanking Region on Backfat Thickness vol.49, pp.1, 2006, https://doi.org/10.5938/youton.49.14