Removal of Aspect-Ratio-Dependent Etching by Low-Angle Forward Reflected Neutral-Beam Etching

Low-Angle Forward Reflected Neutral Beam Etching을 이용한 Aspect-Ratio-Dependent Etching 현상의 제거

  • Min Kyung-Seok (Department of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Park Byoung-Jae (Department of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Yeom Geun-Young (Department of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Kim Sung-Jin (Department of Electrical Engineering, Pohang University Science & Technology) ;
  • Lee Jae-Koo (Department of Electrical Engineering, Pohang University Science & Technology)
  • 민경석 (성균관대학교 공과대학 신소재공학과) ;
  • 박병재 (성균관대학교 공과대학 신소재공학과) ;
  • 염근영 (성균관대학교 공과대학 신소재공학과) ;
  • 김성진 (포항공과대학교 전기공학과) ;
  • 이재구 (포항공과대학교 전기공학과)
  • Published : 2006.07.01

Abstract

In this study, the effect of using a neutral beam formed by low-angle forward reflection of a reactive ion beam on aspect-ratio-dependent etching (ARDE) has been investigated. When a SF6 Inductively Coupled Plasma and $SF_6$ ion beam etching are used to etch poly-Si, ARDE is observed and the etching of poly-Si on $SiO_2$ shows a higher ARDE effect than the etching of poly-Si on Si. However, by using neutral beam etching with neutral beam directionality higher than 70 %, ARDE during poly-Si etching by $SF_6$ can be effectively removed, regardless of the sample conditions. The mechanism for the removal of ARDE via a directional neutral beam has been demonstrated through a computer simulation of different nanoscale features by using the two-dimensional XOOPIC code and the TRIM code.

본 연구에서는 반응성 이온빔을 low-angle forward reflection으로 생성시킨 중성빔을 이용하여 Aspect Ratio Dependent Etching (ARDE) 현상이 제거되는 효과에 대하여 연구하였다. SF6 가스를 사용하여 Inductively Coupled Plasma system과 이온빔으로 각각 poly-Si 을 식각한 결과 ARDE 현상을 관찰할 수 있었으며, Si 기판위에 증착된 Poly-Si을 식각하는 것보다 $SiO_2$ 기판 위에 증착된 Poly-Si을 식각하는 것이 ARDE 현상이 더 많이 나타난다는 것을 관찰할 수 있었다. 반면에 같은 공정 조건에서 중성빔으로 poly-Si을 식각한 결과 이러한 ARDE 현상이 효과적으로 제거되었음을 관찰할 수 있었다. 중성빔을 이용하여 ARDE 현상이 제거되는 원리는 2 차원의 XOOPIC code 와 TRIM code를 사용하여 여러가지 나노스케일의 형상을 컴퓨터 시뮬레이션하여 증명하였다.

Keywords

References

  1. T. Nozawa and T. Kinoshita, Jpn. J. Appl. Phys. 34, 2107 (1995) https://doi.org/10.1143/JJAP.34.2107
  2. T. Kinoshita, M. Hane, and J. P. McVittee. J. Vac. Sci.& Technol. B 14, 560 (1996) https://doi.org/10.1116/1.588431
  3. H. Ootera. Jpn. J. Appl. Phys. 33, 6109 (1993)
  4. K. P. Giapis and T. A. Moore, J. Vac. Sci. Technol. A 13, 959 (1995) https://doi.org/10.1116/1.579658
  5. T. Yunogami, K. Yokogawa, and T. Mizutani, J. Vac. Sci. Technol. A 13, 952 (1995) https://doi.org/10.1116/1.579657
  6. S. D. Athavale and D. J. Economou, J. Vac. Sci. Technol. A 13, 966 (1995) https://doi.org/10.1116/1.579659
  7. C. A. Nichols and D. M. Manos, J. Appl. Phys. 80, 2643 (1996) https://doi.org/10.1063/1.363180
  8. M. J. Goeckner, T. K. Bennett, J.Y. Park, Z. Wang, and S. A. Cohen, International Symposium on Plasma Process-Induced Damage, 175 (1997)
  9. J. Yamamoto, T. Kawasaki, H. Sakaue, S. Shingubara, and Y. Horiike, Thin Solid Films 225, 124 (1993) https://doi.org/10.1016/0040-6090(93)90140-K
  10. K. Yokogawa, T. Yunogami, and T. Mizutani, Jpn. J. Appl. Phys. 35, 1901 (1996) https://doi.org/10.1143/JJAP.35.1901
  11. S. R. Leone, J. Appl. Phys. 34, 2073 (1995) https://doi.org/10.1143/JJAP.34.2073
  12. A. Szabo and T. Engel, J. Vac. Sci. Technol. A 12, 648 (1994) https://doi.org/10.1116/1.578848
  13. H. Sakaue, K. Asami, T. Ichihara, S. Ishizuka, K. Kawamura, Y. Horiike, Saijo, and H. Hiroshima, Mat. Res. Soc. Symp. Proc. 222, 195 (1991)
  14. Y. Horiike, T. Tanaka, M. Nakano, S. Iseda, H. Sakaue, A. Nagata, H. Shindo, S. Miyazaki, and M. Hirose, J. Vac. Sci. Technol. A8, 1844 (1990) https://doi.org/10.1116/1.576814
  15. K. Yokogawa, Y. Yajima, T. misutani, S. Nishimatsu, and K. Ninomiya, Jpn. J. Appl. Phys. 30, 3199 (1991) https://doi.org/10.1143/JJAP.30.3199
  16. Y. Jin, T. Tsuchizawa, and S. Matsuo, Jpn. J. Appl. Phys. 34, 465 (1995) https://doi.org/10.1143/JJAP.34.L465
  17. Lee Chen, A. Sekiguchi, and D. Podlesnik, Mat. Res. Soc. Symp. Proc. 279, 803 (1993)
  18. K. Sakamoto, K. Ichiki, and S. Samukawa, Dry Process International Symp., 11 (2001)
  19. S. Panda and D. J. Economou, J. Vac. Sci. Technol. A 19, 398 (2001) https://doi.org/10.1116/1.1344909
  20. S. Samukawa, K. Sakamoto, and K. Ichiki, J. Vac. Sci. Technol. A 20, 1566 (2002) https://doi.org/10.1116/1.1494820
  21. D. H. Lee, J. W. Bae, S. D. Park, and G. Y. Yeom, Thin Solid Films 398, 647 (2001) https://doi.org/10.1016/S0040-6090(01)01370-0
  22. M. J. Chung. D. H. Lee, and G. Y. Yeom, Thin Solid Films 420, 579 (2002) https://doi.org/10.1016/S0040-6090(02)00845-3
  23. D. H. Lee, M. J. Chung, H. K. Hwang, and G. Y. Yeom, Materials Science and Engineering C 23, 221 (2003) https://doi.org/10.1016/S0928-4931(02)00271-0
  24. D. H. Lee, M. J. Chung, S. D. Park, and G. Y. Yeom, Jpn. J. Appl. Phys. 41, 1412 (2002) https://doi.org/10.1143/JJAP.41.L1412
  25. T. Ono, N. Orimoto, S. Lee, T. Simizu, and M. Esashi, Jpn. J. Appl. Phys. 39, 6976 (2000) https://doi.org/10.1143/JJAP.39.6976
  26. M. Hatakeyama, I. nagahama, K. Ichiki, M. Nakao, and Y. Hatamura, Applied Surface Science 100, 277 (1996)
  27. R. A. Gottscho, C. W. jurgensen, and D. J. Vitkavage, J.Vac. Sci. Technol. B 10, 2133 (1992) https://doi.org/10.1116/1.586180
  28. T. Kinoshita, M. Hane, and J. P. Mcvittie, J. Vac. Sci. Technol. B 14, 560 (1996) https://doi.org/10.1116/1.588431
  29. J. Matsui, N. Nakano, Z. L. Petrovic, and T. Makabe, Appl. Phys. Lett. 78, 883 (2001) https://doi.org/10.1063/1.1347021
  30. G. S. Hwang and K. P. Giapis, Appl. Phys. Lett. 74, 932 (1999) https://doi.org/10.1063/1.123413
  31. H. S. Park, S. J. Kim, Y. Q. Wu, and J. K. Lee, IEEE Trans. Plasma Sci. 31, 703 (2003) https://doi.org/10.1109/TPS.2003.815245
  32. S. J. Kim, S. J. Wang, D. H. Lee, G. Y. Yeom, and J. K.Lee, J. Vac. Sci. Technol. A 22, 1948 (2004) https://doi.org/10.1116/1.1774198
  33. J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd,Comp. Phys. Commun. 87, 199 (1995) https://doi.org/10.1016/0010-4655(94)00173-Y
  34. D. H. Lee, J. W. Bae, S. D. Park, and G. Y. Yeom, Thin Solid Films 398, 647 (2001) https://doi.org/10.1016/S0040-6090(01)01370-0
  35. D. H. Lee, M. J. Chung, S. D. Park, and G. Y. Yeom, Jpn. J. Appl. Phys. 41, 1412 (2002) https://doi.org/10.1143/JJAP.41.L1412
  36. D. H. Lee, S. J. Jung, S. D. Park, and G. Y. Yeom, Surfaceand Coatings Technology 178, 420 (2004) https://doi.org/10.1016/j.surfcoat.2003.09.019
  37. S. J. Kim, S. J. Wang, D. H. Lee, G. Y. Yeom and J. K. Lee, J. Vac. Sci. Technol. A 22, 1948 (2004) https://doi.org/10.1116/1.1774198