멀티미디어 네트워크의 트래픽 혼잡 제어를 위한 적응적 온라인 가격결정기법에 대한 연구

중심 회원 김승욱*, 김성천**

An Adaptive Online Pricing Mechanism for Congestion Control in QoS sensitive Multimedia Networks

Sungwook Kim*, Sungchun Kim** Lifelong Members

요 약

본 논문에서는 대용량의 대역폭을 사용하는 다양한 멀티미디어 서비스에서 발생할 수 있는 네트워크 혼잡 문제를 효율적으로 제어하여, 동시에 우선순위가 높은 서비스의 QoS를 보장하는 적응적 온라인 가격결정 방법을 제안하였다. 이 방법은 현재 네트워크의 트래픽 상황을 기반으로 하여 적용성과 유연성이 제공하는 실시간 온라인 기법을 기반으로 수행되기 때문에 실제 네트워크 운영에 적용하기가 용이하다. 컴퓨터 시뮬레이션을 통하여 본 논문이 제안한 방법이 다양한 네트워크 트래픽 상황에서 우수한 성능을 가지는 것을 확인할 수 있었다.

Keywords: Dynamic pricing mechanism, Multimedia services, On-line decisions, bandwidth management, QoS

ABSTRACT

Over the years, the widespread proliferation of multimedia services has necessitated the development for an efficient network management. In this paper, we investigate the role of adaptive online pricing mechanism in order to manage effectively the network congestion problem. Our on-line approach is dynamic and flexible that responds to current network conditions. With a simulation study, we demonstrate that our proposed scheme enhances network performance and system efficiency simultaneously under widely diverse traffic load intensities.

I. 서론

다양한 형태의 멀티미디어 데이터는 서로 다른 대역폭과 QoS(Quality of Service)를 요구하며, 요구한 QoS에 민감한 특성을 가지고 있다. 일반적으로 멀티미디어 데이터는 요구되는 QoS에 따라 class I(실시간) 데이터와 class II(비실시간) 데이터로 구분된다. 이를 간단히 구분은 QoS 제어를 위한 우선순위로 사용되는데, 서비스의 지연 허용성을 고려해서 비실시간(class II) 트래픽 데이터 보다는 실시간(class I) 데이터 트래픽에 더 높은 우선순위를 부여한다[1][4].

본 논문에서 제안한 혼잡제어 방식은 사용자들의 요구를 현재 사용 가능한 네트워크의 대역폭에 맞춰 조절하는 것이다. 일반적으로, 사용자들은 다른 사용자들에 대한 배려 없이 자기적이고 독립적으로 행동하지만 그들은 서비스 가격에 민감하게 반응하는 경향이 있다. 따라서, 최근 들어 동적인 대역폭 가격조절 기법이 새로운 트래픽 혼잡 제어를 위한 방법으로 고려되고 있다[5][6].

본 논문에서 제안된 적응적 온라인 가격결정 방법은 기존에 제안된 QoS 관리 기법과 결합하여 적
적한 대역폭 가격을 설정하고, 이를 통해 사용자의 서비스 요구를 조정하여 네트워크 혼잡상태를 효율적으로 제어하며 동시에 네트워크 서비스 제공자의 이익을 최대화한다. 이와 같은 방법은 다양한 트래픽 상황에서 네트워크의 전체 성능을 개선할 뿐만 아니라 경제적인 효율성도 증가시킨다.

시뮬레이션에 의한 성능분석을 통해, 본 논문에서 제안된 온라인 관리방법이 전체 네트워크 시스템의 성능을 향상시키고, 네트워크 혼잡 문제를 완화하며, 동시에 높은 경제적 효율성을 제공하는 것을 확인할 수 있었다. 본 논문의 구성은 다음과 같다. 2장에서는 제안된 온라인 가격 결정 방법에 대하여 자세히 기술하고, 3장에서는 시뮬레이션을 통하여 제시된 기법의 우수성을 검증하며, 마지막으로 4장에서는 결론과 향후 연구 방향에 대하여 논의한다.

II. 적응적 온라인 가격결정 기법

이 장에서는, 본 논문에서 제안된 적응적 온라인 가격결정 방법을 상세히 기술한다. 먼저, 대역폭 요금 추정기법에 대해 설명한 후, 사용자의 요구와 네트워크의 가용 대역폭 양에 따른 적응적 가격 결정 방법을 제안한다. 마지막으로 서로 다른 멀티미디어 데이터를 위한 해당 서비스 가격을 산출하는 방법에 대해 설명한다.

미래의 네트워크 서비스 요구에 대한 현 시점에서 정확히 예측하기는 불가능하다. 따라서 적절한 온라인 방법에 의해 대역폭 요구량(Dn)을 추정한다. 제안된 대역폭 요금 추정기법은 현재 네트워크 상황에 기반을 두어 Dn의 량을 적응적으로 조절해 나간다.

이를 위해 본 논문에서는 트래픽 원도우(Wset_I)를 정의한다. 트래픽 원도우는 서비스 요구 패턴을 알 수 있도록 네트워크상의 대역폭 요구량을 시간으로 가정하고 유지한다. 원도우의 크기 [tc - twin I, tc]는 현재시간(tc)과 트래픽을 위한 원도우 길이 twin I 로 정의하는데, 본 논문에서는 시간 상의 단위시간(unit_time)으로 나누고 트래픽 원도우 크기는 단위시간의 정수배로 설정한다. 원도우의 길이는 온라인 관리기법에 의해 적응적으로 조절되며, 만약, 현재 네트워크의 신규 서비스 실패율(Call Blocking Probability: CBP)이 미리 설정된 목표치 (Ptarget)보다 큰 경우, 트래픽 원도우의 크기는 단위시간의 크기만큼 증가한다. 그 반대의 경우에는 단위시간의 크기만큼 감소한다. 트래픽 원도우를 이용해서 네트워크 상황에 적응적으로 대역폭 요구의 평균량(Dn)을 식 (1)과 같이 산출한다.

\[
D_n = \sum_{k=0}^{n} (B_k \times N_k)/T_c
\]

(N_k, B_k)은 트래픽 서비스 타입 i의 갯수와 이 서비스가 요구하는 대역폭 양이며, Tc 는 트래픽 원도우의 길이이다.

이상적인 상황은 산출된 대역폭의 양이 다음 단위시간에 요구되는 서비스를 제공하기 위한 대역폭의 총량과 일치하는 경우이다. 그러나 미래의 서비스 요구량이나 트래픽의 변동을 정확히 예측하기 어려운 현실에서 이하만큼은 이상적인 값을 현재의 시간에서 정확히 예측하고 유지한다는 것은 불가능하다. 따라서 본 논문에서는 산출된 대역폭의 양을 단위시간마다 추정적으로 조정하여 최적화된 값에 근접하도록 한다.

네트워크 가격결정 모델은 사용자와 공급자로 구성된다. 사용자는 자신이 요구하는 서비스의 QoS를 만족시킬 수 있는 대역폭을 요구한다. 공급자는 제공할 대역폭을 사용자에게 적절히 할당하여 최대의 네트워크 수익을 얻을 수 있다. 다양한 멀티미디어 서비스를 제공하기 위해 본 논문에서는, 대역폭은 기본 대역폭단위(Basic_Unit: BU)로 나누어 할당되는데, 하나의 BU는 대역폭 할당의 최소 단위이다. 만약 네트워크의 트래픽 부가가 적고 모든 사용자들이 납득할만한 QoS를 얻고 있다면, 각 BU는 고정가격(Bm)으로 제공된다. 그러나 네트워크 혼잡이 발생하여 요청되는 대역폭(t)이 공급 가능한 이상 대역폭(t)보다 크게 되면 제안된 방식은 각 사용자들에게 추가적인 대역폭 사용을 부과하게 된다. 사용자들은 가격에 민감하게 반응하기 때문에 대역폭 가격의 상승은 사용자들의 대역폭 요구량을 줄이도록 자극할 것이며 이를 통해 네트워크의 트래픽 혼잡을 감소시킬 수 있다. 네트워크 혼잡 상황이 종료되면 추가요금부과도 중단된다. 따라서 추가 요금은 수요와 공급이 균형을 이루며 매기 상호와 협력을 쏟는 상호작용을 통하여 대역폭 요구와 공급이 균형을 이루고 네트워크가 안정된 상태를 유지하도록 한다.

조정구간인 \(A_{PK} \)에서 산출되는 \(BU \)의 실제 가격 \((PK(BU)) \)은 식 (2)와 같이 계산된다.

\[
P(KBU) = \max \{ Bm, \quad [PK-1(BU) + Fp(Be_k, Sk)] \} \quad (2)
\]

\(Bm \)은 하나의 \(BU \)에 대한 최소요금이며, 대역폭 가격은 \(Bm \)보다 하락하지 않는다고 가정한다. \(Be_k \)은 \(A_{PK} \) 동안에 예상되는 대역폭 수요량, \(Sk \)는 가용 대역폭의 양을 의미하며, \(Fp \)는 가격변동을 산출하는 함수로, \(D \)와 \(S \)'의 차이에 비례하여 아래의 식 (3)과 같이 정의된다.

\[
Fp(Be_k, Sk) = (\delta \times (Be_k - Sk) / Sk) \quad (3)
\]

\(\delta \)는 네트워크 관행상태를 이루하게 하기 위한 메개변수로 \(D(또는 S) \)가 급속히 증가하게 되면, \(\delta \)의 값을 적절히 조절함으로써 네트워크의 관행상태를 보다 탈리 이를 수 있도록 한다. 고정된 \(\delta \)값은 네트워크 혼잡상태에 효율적이지 못하므로 시스템의 메개변수와 같이 현재 네트워크 상황을 고려해 적응적 온라인 기법으로 \(\delta \)값을 점검한다. \(A_{PK} \) 기간 동안의 트래픽 경향이 이전기간의 \(A_{PK-1} \)와 동일한 경향을 나타내면 즉, 계속적으로 \(D \)가 \(S \)보다 크거나 또는 현재 대역폭 사용량이 \(Utarget \) 보다 낮다면, \(\delta \)는 대역폭의 수요와 공급량에 따라 적응적으로 조절된다.

이미 발표한 논문들 [1-4]에서는 다양한 멀티미디어 서비스 중에서 우선순위가 높은 \(class \ I \) 트래픽 서비스를 위한 대역폭 예약기법을 소개하였다. 멀티미디어 네트워크에서 서로 다른 QoS요청에 기반한 대역폭 예약방법의 존재여부와 서비스의 차별적인 가격부과를 위해 고려해야 하는 또 다른 중요한 사항이다. 멀티미디어 서비스 \(RI \)를 위한 가격은 요구된 대역폭의 \((BU) \)의 수, 구매 시간의 대역폭의 가격, 그리고 서비스 우선순위 및 대역폭 예약량의 존재 여부 등에 의해 식 (4)과 같이 정의한다.

\[
\text{Cost of } RI = \begin{cases}
[Volume(V) \times P(BU)] \times (Res)^r & \text{if } RI \in \text{class I service} \\
[Volume(V) \times P(BU)] & \text{if } RI \in \text{class II service}
\end{cases} \quad (4)
\]

\(Volume(V) \)과 \(Res \)은 서비스 \(RI \)가 요청한 \(BU \)계수 및 대역폭 예약량이며, \(P(BU) \)는 \(BU \)의 현재 가격이다. \((Res)^r \)는 ‘priority factor’로 우선순위가 높은 서비스에 부과되는 추가적인 비용을 의미한다. 대역폭 \(\gamma (0 \leq \gamma \leq 1) \)은 현재 네트워크의 신규 서비스 실패율(CBP)로 정의된다. 따라서, 네트워크 트래픽 부가가 적어 모든 사용자가 요구한 서비스를 받을 수 있을 때 \(\gamma \)은 \(0 \)이다. 이런 경우는 우선순위가 높은 서비스에 부가되는 추가요금(\(Res \))은 \(1 \)이다. 네트워크 트래픽 부가가 증가되며, 새로운 서비스 요청이 거부되기 시작하면 \(\gamma \)값 역시 증가하여 예약된 대역폭의 양에 따라서 \(class\ I \) 서비스에 대한 추가요금(\(Res \))이 증가한다.

III. 성능 평가

이 장에서는 컴퓨터 시뮬레이션을 통하여 본 논문에서 제안한 온라인 가격결정 기법과 기존에 제시한 고정가격 기법의 성능을 비교, 분석하였다. 멀티미디어 데이터 태임, 이용요금이 선정, 그리고 시스템 퍼포먼스 값을 공정한 성능의 비교, 분석을 위해 실제 네트워크 환경과 유사하게 제안된 시뮬레이션 모델 [1-4]과 동일하게 설정하였다.

네트워크의 성능평가를 위한 메트릭에는 최초로 시스템에 진입하고자 하는 서비스 요금이 실패할 확률인 신규 서비스 실패율(CBP), 셀룰러 네트워크 상에서 사용자가 다른 설로 이동하고자 하는 요청이 실패할 확률인 핸드오프 서비스 실패율(CDP), 그리고 네트워크 수익(network revenue)등이 있다.

앞에서 언급했듯이 본 논문의 기본경쟁은 가격 변화에 대응하여 대역폭에 대한 수요가 적절히 변화한다는 것이다. 즉, 대역폭 요금의 증가는 사용자들의 서비스 요구를 감소시킨다는 것이다. 다양한 가격변동에 대한 사용자들의 신속적인 반응은 다음과 같이 3가지 형태의 서로 다른 반응형태로 표현될 수 있다(5).

\[
F1(x) = e^{-x}, \quad F2(x) = \frac{e^{-x}}{1+x}, \quad F3(x) = \frac{1}{1+x} \quad (5)
\]

그림 1과 그림 2는 셀룰러 네트워크상에서의 신규 서비스 실패율(CBP)과 핸드오프 서비스 실패율(CDP)을 나타낸다. 전체 네트워크의 트래픽 부가가 적을 때는, 모든 방법이 거의 동일한 성능을 나타낸다. 왜냐하면 각 셀에 충분한 가용 대역폭 존재하기 때문에 사용자들의 서비스 요구를 모두 수용할 수 있기 때문이다. 그러나, 서비스 요금상환의 값이 점점 증가함수 가용 대역폭의 양이 감소 증가되게 되어 서비스 요금이 실패하는 비율이 증가하게 되므로 CBP의 CDP가 증가하게 된다. 그러나, 제안된
눈동 / 멀티미디어 네트워크의 트래픽 혼잡 제어를 위한 작동적 온라인 가격 결정기법에 대한 연구

그림 1. 신규 서비스 실험(CBP)

그림 2. 핸드오프 서비스 실험(CDP)

작동적 온라인 가격 결정 방법에서는 대역폭 가격 조정에 의해 대역폭에 대한 수요를 적절히 조정하여 기존의 제안된 고정가격 방법에 비해 CBP와 CDP가 감소되는 것을 확인할 수 있다.

그림 3은 네트워크 수익의 변화를 나타낸다. 마찬가지로 트래픽 부하가 적을 때는 모든 방법의 네트워크 수익이 동일함을 알 수 있다. 그러나 네트워크가 과부하 상태로 변하면, 작동적 가격 정책 방법의 네트워크 수익이 급격히 증가하는 것을 알 수 있다.

V. 결론

본 논문에서는 다양한 멀티미디어 네트워크를 위한 작동적 온라인 가격 관리 기법을 제시하였다. 이 방법은 네트워크의 높은 경제적으로 효율성을 유지하며 동시에 트래픽 혼잡이 발생했을 때, 이를 적절히 완화시킬 수 있도록 설계되었다. 시뮬레이션을 통해 성능을 비교, 본격적 결과, 다양한 네트워크에 걸쳐 실험을 수행한 결과, 작동적 가격 결정 기법의 효율성을 입증하였다.

김승욱 (Sungwook Kim)
중신회원
1993년 2월 서울대학교 전자 계산학과 학사
1995년 2월 서울대학교 전자 계산과학과 석사
2004년 Syracuse University, Computer science 박사 / Post-Doc.
2006년~현재 서울대학교 공학부 컴퓨터학과 조교수
QoS, 실시간 제어처리, 셀룰러 네트워크 자원관리.

김성천 (Sungchun Kim)
중신회원
1975년 서울대학교 공과대학 공학사
1979년 Wayne State University, M.S.
1982년 Wayne State University, Ph.D.
1985년~현재 서울대학교 공학부 컴퓨터학과 교수
QoS, 실시간 제어처리, 셀룰러 네트워크 자원관리.