Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites

  • Wu, Shi-Hong (Division of Advanced Fibro-Science, Kyoto Institute of Technology) ;
  • Natsuki, Toshiaki (Dept. of Functional Machinery and Mechanics, Shinshu University) ;
  • Kurashiki, Ken (Division of Advanced Fibro-Science, Kyoto Institute of Technology) ;
  • Ni, Qing-Qing (Dept. of Functional Machinery and Mechanics, Shinshu University) ;
  • Iwamoto, Masaharu (Division of Advanced Fibro-Science, Kyoto Institute of Technology) ;
  • Fujii, Yoshimichi (Division of Advanced Fibro-Science, Kyoto Institute of Technology)
  • Published : 2007.09.01

Abstract

Carbon nanofiber (CNF)/unsaturated polyester resin (UPR) was prepared by a solvent evaporation method, and the temperature dependency of electrical conductivity was investigated. The CNF/UPR composites had quite a low percolation threshold due to CNF having a larger aspect ratio and being well dispersed in the UPR matrix. The positive temperature coefficient (PTC) was found in the CNF/UPR composites and it showed stronger effect around the percolation threshold. The electrical resistance of the CNF/UPR composites decreased and had lower temperature dependency with increasing numbers of thermal cycles.

Keywords

References

  1. Y. H. Hou, M. Q. Zhang and M. Zh. Rong, Performance stabilization of conductive polymer composites, J. Appl. Polym. Sci. 89, 2438-2445 (2003) https://doi.org/10.1002/app.12465
  2. W. H. Di and G. Zhang, Resistivity-temperature behavior of carbon fiber filled semicrystalline composites, J. Appl. Polym. Sci. 91, 1222-1228 (2004) https://doi.org/10.1002/app.13281
  3. Ch. Ch. Ma, Y. L. Huang, H. C. Kuan and Y. S. Chiu, Preparation and electromagnetic interference shielding characteristics of novel carbon-nanotube/siloxane/poly-(urea urethane) nanocomposites, J. Polym. Sci.: Part B: Polym. Phys. 43, 345-358 (2005) https://doi.org/10.1002/polb.20330
  4. N. B. Janda, J. M. Keith, J. A. King, W. F. Perger and T. J. Oxby, Shielding-effectiveness modeling of carbon-fiber/nylon-6,6 composites, J. Appl. Polym. Sci. 96, 62-69 (2005) https://doi.org/10.1002/app.21426
  5. S. Shekhar, V. Prasad and S. V. Subramanyam, Transport properties of conducting amorphous carbon/poly(vinyl chloride) composite, Carbon 44, 334-340 (2006) https://doi.org/10.1016/j.carbon.2005.07.018
  6. F. Carmona and C. Mouney, Temperature-dependent resistivity and conduction mechanism in carbon particle-filled polymers, J. Mater. Sci. 27, 1322-1326 (1992) https://doi.org/10.1007/BF01142046
  7. C. Zhang, C. A. Ma, P. Wang and M. Sumita, Temperature dependency of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction, Carbon 43, 2544-2553 (2005) https://doi.org/10.1016/j.carbon.2005.05.006
  8. B. Kin, J. Lee and I. Yu, Electrical properties of single-wall carbon nanotube and epoxy composites, J. Appl. Phys. 94, 6724-6728 (2003) https://doi.org/10.1063/1.1622772
  9. J. Xua, J. P. Donohoeb and C. U. Pittman Jr., Preparation, electrical and mechanical properties of vapor grown carbon fiber (VGCF)/vinyl ester composites, Composites: Part A 35, 693-701 (2004) https://doi.org/10.1016/j.compositesa.2004.02.016
  10. D. Toker, D. Azulay, N. Shimoni, I. Balberg and O. Millo, Tunneling and percolation in metalinsulator composite materials, Phys. Rev. B 68, 041403-1 (2003) https://doi.org/10.1103/PhysRevB.68.041403
  11. P. Sheng, E. K. Sichel and J. I. Gittleman, Fluctuation induced tunneling conduction in carbon polyvinylchloride composites, Phys. Rev. Lett 40, 1197-1200 (1978) https://doi.org/10.1103/PhysRevLett.40.1197
  12. F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer and K. I. Winey, Nanotube networks in polymer nanocomposites: rheology and electrical conductivity, Macromolecules 37, 9048-9055 (2004) https://doi.org/10.1021/ma049164g
  13. F. Dalmas, R. Dendievel, L. Chazeau, J. Cavaille and C. Gauthier, Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks, Acta Materialia 54, 2923-2931 (2006) https://doi.org/10.1016/j.actamat.2006.02.028
  14. J. M. Benoit, B. Corraze and O. Chauvet, Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites, Phys. Rev. B 65, 241405(1)-241405(4) (2002) https://doi.org/10.1103/PhysRevB.65.241405
  15. Y. Chekanov, R. Ohnogi, S. Asai and M. Sumta, Electrical properties of epoxy resin filled with carbon fibers, J. Mater. Sci. 34, 5589-5592 (1999) https://doi.org/10.1023/A:1004737217503
  16. H. Bar, M. Narkis and G. Boiteux, The electrical behavior of thermosetting polymer composites containing metal plated ceramic filler, Polym. Compos. 26, 12-19 (2005) https://doi.org/10.1002/pc.20064
  17. F. El-Tantawy, New double negative and positive temperature coefficients of conductive EPDM rubber TiC cerimic composites, Eur. Polym. J. 38, 567-577 (2002) https://doi.org/10.1016/S0014-3057(01)00208-7
  18. X. Liang, The dependence of resistivity of carbon fibers/ABS resin composites on the temperature, J. Mater. Sci. Lett. 19, 1215-1216 (2000) https://doi.org/10.1023/A:1006796623477
  19. J. C. Lee, K. Nakajima, T. Ikehara and T. Nishi, Conductive-filler-filled poly(1- caprolactone)/poly (vinylbutyral) blends. II. Electric properties (positive temperature coefficient phenomenon), J. Appl. Polym. Sci. 65, 409-416 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970711)65:2<409::AID-APP22>3.0.CO;2-T
  20. W. Di, G. Zhang, J. Q. Xu, Y. Peng, X. J. Wang and Z. Y. Xie, Positive-temperaturecoefficient/ negative-temperature-coefficient effect of low-density polyethylene filled with a mixture of carbon black and carbon fiber, J. Polym. Sci.: Part B: Polym. Phys. 41, 3094-3101 (2003) https://doi.org/10.1002/polb.10594
  21. G. Wu, T. Miura, S. Asai and M. Sumita, Carbon black-loading induced phase fluctuations in PCDF/PMMA miscible blends: dynamic percolation measurements, Polymer 42, 3271-3279 (2001) https://doi.org/10.1016/S0032-3861(00)00417-1
  22. C. Zhang, P. Wang, C. Ma, G. Wu and M. Sumita, Temperature and time dependency of conductive network formation: dynamic percolation and percolation time, Polymer 47, 466-473 (2006) https://doi.org/10.1016/j.polymer.2005.11.053
  23. A. Katada, Y. Konishi, T. Tominaga, S. Asai and M. Sumita, Dynamic percolation phenomenon of poly(methyl methacrylate)/surface fluorinated carbon black composite, J. Appl. Polym. Sci. 89, 1151-1155 (2003) https://doi.org/10.1002/app.12447
  24. J. M. Torrents and T. O. Mason, Analysis of the impedance spectra of short conductive fiber reinforced composites, J. Mater. Sci. 36, 4003-4012 (2001) https://doi.org/10.1023/A:1017986608910
  25. J.-E. Park, M. Saikawa, M. Atobe and T. Fuchigami, Highly-regulated nanocoatings of polymer films on carbon nanofibers using ultrasonic irradiation, Chem. Commun. 2708-2710 (2006)