[ $Ca^{2+}$ ]-dependent Long-term Inactivation of Cardiac $Na^+/Ca^{2+}$ Exchanger

  • Lee, Jee-Eun (Department of Physiology, SBRI, Sungkyunkwan University School of Medicine) ;
  • Kang, Tong-Mook (Department of Physiology, SBRI, Sungkyunkwan University School of Medicine)
  • Published : 2007.10.31

Abstract

Using BHK cells with stable expression of cardiac $Na^+/Ca^{2+}$ exchanger(BHK-NCX1), reverse mode(i.e. $Ca^{2+}$ influx mode) of NCX1 current was recorded by whole-cell patch clamp. Repeated stimulation of reverse NCX1 produced a cytosolic $Ca^{2+}$-dependent long-term inactivation of the exchanger activity. The degrees of inactivation correlated with NCX1 densities of the cells and were attenuated by reduced $Ca^{2+}$ influx via the reverse exchanger. The inactivation of NCX1 was attenuated by(i) inhibition of $Ca^{2+}$ influx with reduced extracellular $Ca^{2+}$, (ii) treatment with NCX1 blocker($Na^{2+}$), and (iii) increase of cytoplasmic $Ca^{2+}$ buffer(EGTA). In BHK-NCX1 cells transiently expressing TRPV1 channels, $Ca^{2+}$ influx elicited by capsaicin produced a marked inactivation of NCX1. We suggest that cytoplasmic $Ca^{2+}$ has a dual effect on NCX1 activities, and that allosteric $Ca^{2+}$ activation of NCX1 can be opposed by the $Ca^{2+}$-dependent long-term inactivation in intact cells.

Keywords

References

  1. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763-854, 1999 https://doi.org/10.1152/physrev.1999.79.3.763
  2. Condrescu M, Reeves JP. Actin-dependent regulation of the cardiac $Na^+/Ca^{2+}$ exchanger. Am J Physiol Cell Physiol 290: C691-701, 2006 https://doi.org/10.1152/ajpcell.00232.2005
  3. Egger M, Porzig H, Niggli E, Schwaller B. Rapid turnover of the 'functional' $Na^+-Ca^{2+}$ exchanger in cardiac myocytes revealed by an antisense oligodeoxynucleotide approach. Cell Calcium 37: 233-243, 2005 https://doi.org/10.1016/j.ceca.2004.10.006
  4. Haigney MC, Miyata H, Lakatta EG, Stern MD, Silverman HS. Dependence of hypoxic cellular calcium loading on $Na^+-Ca^{2+}$ exchange. Circ Res 71: 547-557, 1992 https://doi.org/10.1161/01.RES.71.3.547
  5. Hilgemann DW, Ball R. Regulation of cardiac $Na^+,\;Ca^{2+}$ exchange and KATP potassium channels by $PIP_2$. Science 273: 956-959, 1996 https://doi.org/10.1126/science.273.5277.956
  6. Hilgemann DW, Collins A, Matsuoka S. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Secondary modulation by cytoplasmic calcium and ATP. J Gen Physiol 100: 933-961, 1992b https://doi.org/10.1085/jgp.100.6.933
  7. Hilgemann DW, Matsuoka S, Nagel GA, Collins A. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation. J Gen Physiol 100: 905-932, 1992a https://doi.org/10.1085/jgp.100.6.905
  8. Hilgemann DW. Regulation and deregulation of cardiac $Na^+-Ca^{2+}$ exchange in giant excised sarcolemmal membrane patches. Nature 344: 242-245, 1990 https://doi.org/10.1038/344242a0
  9. Iwamoto T, Pan Y, Nakamura TY, Wakabayashi S, Shigekawa M. Protein kinase C-dependent regulation of $Na^+/Ca^{2+}$ exchanger isoforms NCX1 and NCX3 does not require their direct phosphorylation. Biochemistry 37: 17230-17238, 1998 https://doi.org/10.1021/bi981521q
  10. Kang TM, Hilgemann DW. Multiple transport modes of the cardiac $Na^+/Ca^{2+}$ exchanger. Nature 427: 544-548, 2004 https://doi.org/10.1038/nature02271
  11. Katanosaka Y, Iwata Y, Kobayashi Y, Shibasaki F, Wakabayashi S, Shigekawa M. Calcineurin inhibits$Na^+/Ca^{2+}$ exchange in phenylephrine-treated hypertrophic cardiomyocytes. J Biol Chem 280: 5764-5772, 2005 https://doi.org/10.1074/jbc.M410240200
  12. Linck B, Qiu Z, He Z, Tong Q, Hilgemann DW, Philipson KD. Functional comparison of the three isoforms of the $Na^+/Ca^{2+}$ exchanger (NCX1, NCX2, NCX3). Am J Physiol 274: C415-423, 1998 https://doi.org/10.1152/ajpcell.1998.274.2.C415
  13. Opuni K, Reeves JP. Feedback inhibition of sodium/calcium exchange by mitochondrial calcium accumulation. J Biol Chem 275: 21549-21554, 2000 https://doi.org/10.1074/jbc.M003158200
  14. Reeves JP, Condrescu M. Allosteric activation of sodium-calcium exchange activity by calcium: persistence at low calcium concentrations. J Gen Physiol 122: 621-639, 2003 https://doi.org/10.1085/jgp.200308915
  15. Reeves JP, Hale CC. The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem 259: 7733-7739, 1984
  16. Shen C, Lin MJ, Yaradanakul A, Lariccia V, Hill JA, Hilgemann DW. Dual control of cardiac $Na^+/Ca^{2+}$ exchange by PIP2: analysis of the surface membrane fraction by extracellular cysteine PEGylation. J Physiol 582: 1011-1026, 2007 https://doi.org/10.1113/jphysiol.2007.132720
  17. Verdru P, De Greef C, Mertens L, Carmeliet E, Callewaert G. $Na^+-Ca^{2+}$ exchange in rat dorsal root ganglion neurons. J Neurophysiol 77:484-90, 1997 https://doi.org/10.1152/jn.1997.77.1.484
  18. Yaradanakul A, Feng S, Shen C, Lariccia V, Lin MJ, Yang J, Kang TM, Dong P, Yin HL, Albanesi JP, Hilgemann DW. Dual control of cardiac $Na^+/Ca^{2+}$+ exchange by $PIP_2$: electrophysiological analysis of direct and indirect mechanisms. J Physiol 582: 991-1010, 2007 https://doi.org/10.1113/jphysiol.2007.132712
  19. Zhang XQ, Ahlers BA, Tucker AL, Song J, Wang J, Moorman JR, Mounsey JP, Carl LL, Rothblum LI, Cheung JY. Phospholemman inhibition of the cardiac $Na^+/Ca^{2+}$ exchanger. Role of phosphorylation. J Biol Chem 281: 7784-7792, 2006 https://doi.org/10.1074/jbc.M512092200