Mechanical Hyperalgesia Induced by Blocking Calcium-activated Potassium Channels on Capsaicin-sensitive Afferent Fiber

  • Lee, Kyung-Hee (Department of Physiology, College of Medicine, Hanyang University) ;
  • Shin, Hong-Kee (Department of Physiology, College of Medicine, Hanyang University)
  • Published : 2007.10.31

Abstract

Small and large conductance $Ca^{2+}$-activated $K^+(SK_{Ca}\;and\;BK_{Ca})$ channels are implicated in the modulation of neuronal excitability. We investigated how changes in peripheral $K_{Ca}$ channel activity affect mechanical sensitivity as well as the afferent fiber type responsible for $K_{Ca}$ channel-induced mechanical sensitivity. Blockade of $SK_{Ca}$ and $BK_{Ca}$ channels induced a sustained decrease of mechanical threshold which was significantly attenuated by topical application of capsaicin onto afferent fiber and intraplantar injection of 1-ethyl-2-benzimidazolinone. NS1619 selectively attenuated the decrease of mechanical threshold induced by charybdotoxin, but not by apamin. Spontaneous flinching and paw thickness were not significantly different after $K_{Ca}$ channel blockade. These results suggest that mechanical sensitivity can be modulated by $K_{Ca}$ channels on capsaicin-sensitive afferent fibers.

Keywords

References

  1. Adeagbo ASO. 1-Ethyl-2-benzimidazolinone stimulates endothelial $K_{Ca}$ channels and nitric oxide formation in rat mesenteric vessels. Eur J Pharmacol 379: 151-159, 1999 https://doi.org/10.1016/S0014-2999(99)00489-6
  2. Bahia PK, Suzuk R, Benton DCH, Jowett AJ, Chen NX, Trezise DJ, Dickenson AH, Moss GWJ. A functional role for small-conductance calcium-activated potassium channels in sensory pathways including nociceptive processes. J Neurosci 25: 3489-3498, 2005 https://doi.org/10.1523/JNEUROSCI.0597-05.2005
  3. Boettger MK, Till S, Chen MX, Anand U, Otto WR, Plumpton C, Trezise DJ, Tate SN, Bountra C, Coward K, Birch R, Anand P. Calcium-activated potassium channel SK1- and IK1-like immunoreactivity in injured human sensory neurons and its regulation by neurotrophic factors. Brain 125: 252-263, 2002 https://doi.org/10.1093/brain/awf026
  4. Bond CT, Herson PS, Strassmaier T, Hammond R, Stackman R, Maylie J, Adelman JP. Small conductance $Ca^{2+}$-activated $K^+$ channel knock-out mice reveal the intensity of calcium dependent afterhyperpolarization currents. J Neurosci 24: 5301-5306, 2004 https://doi.org/10.1523/JNEUROSCI.0182-04.2004
  5. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306-313, 2000 https://doi.org/10.1126/science.288.5464.306
  6. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816-824, 1997 https://doi.org/10.1038/39807
  7. Chabal C, Jacobson L, Russell LC, Burchiel KJ. Pain responses to perineuronal injection of normal saline, gallamine, and lidocaine in humans. Pain 36: 321-325, 1989 https://doi.org/10.1016/0304-3959(89)90091-2
  8. Chaplan SR, Pogrel JW, Yaksh TL. Role of voltage-dependent calcium channel subtypes in experimental tactile allodynia. J Pharmacol Exper Ther 269: 1117-1123, 1994
  9. Chen YN, Li KC, Li Z, Shang GW, Liu DN, Lu ZM, Zhang JW, Ji YH, Gao GD, Chen J. Effects of bee venom peptidergic components on rat pain-related behaviors and inflammation. Neuroscience 138: 631-640, 2006 https://doi.org/10.1016/j.neuroscience.2005.11.022
  10. Chung JM, Lee KH, Hori Y, Willis WD. Effects of capsaicin applied to a peripheral nerve on the responses of primate spinothalamic tract cells. Brain Res 329: 27-38, 1985 https://doi.org/10.1016/0006-8993(85)90509-8
  11. Davis JB, Gray J, Gunthopre MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405: 183-187, 2000 https://doi.org/10.1038/35012076
  12. Fitzgerald M, Woolf CJ. The time course and specificity of the changes in the behavioral and dorsal horn cell responses to noxious stimuli following peripheral nerve capsaicin treatment in the rat. Neuroscience 7: 2051-2056, 1982 https://doi.org/10.1016/0306-4522(82)90119-1
  13. Gold MS, Shuster MJ, Levine JD. Role of a $Ca^{2+}$-dependent slow afterhyperpolarization in prostaglandin $E_2$-induced sensitization of cultured rat sensory neurons. Neurosci Lett 205: 161-164, 1996 https://doi.org/10.1016/0304-3940(96)12401-0
  14. Hu H, Shao L-R, Chavoshy S, Gu N, Trieb M, Behrens R, Loake P, Pongs O, Knaus HG, Otterson OP, Storm JF. Presynaptic $Ca^{2+}$-activated $K^+$ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 21: 9585-9597, 2001 https://doi.org/10.1523/JNEUROSCI.21-24-09585.2001
  15. Jancso G, Kiraly E, Jancso-Gabor A. Pharmacologically induced selective degeneration of chemosensitive primary sensory neurons. Nature 270: 741-743, 1977 https://doi.org/10.1038/270741a0
  16. Jurna I, Habermann E. Intrathecal apamin selectively facilitates activity in ascending axons of rat spinal cord evoked by stimulation of afferent C fibers in sural nerve. Brain Res 280: 186-189, 1983 https://doi.org/10.1016/0006-8993(83)91191-5
  17. Marrion NV, Tavalin SJ. Selective activation of $Ca^{2+}$-activated $K^+$ channels by co-localized $Ca^{2+}$ channels in hippocampal neurons. Nature 395: 900-905, 1998 https://doi.org/10.1038/27674
  18. Mixcoatl-Zecuatl T, Medina-Santillán R, Reyes-García G, Vidal- Cantú GC, Granados-Soto V. Effect of $K^+$ channel modulators on the antiallodynic effect of gabapentin. Eur J Pharmacol 484: 201-208, 2004 https://doi.org/10.1016/j.ejphar.2003.11.022
  19. Mongan LC, Hill MJ, Chen MX, Tate SN, Collins SD, Buckby L, Grubb BD. The distribution of small and intermediate conductance calcium-activated potassium channels in the rat sensory nervous system. Neuroscience 131: 161-175, 2005 https://doi.org/10.1016/j.neuroscience.2004.09.062
  20. Ortiz MI, Castaneda-Hernández G, Granados-Soto V. Pharmacological evidence for the activation of $Ca^{2+}$-activated $K^+$ channels by meloxicam in the formalin test. Pharmacol Biochem Behav 81: 725-731, 2005 https://doi.org/10.1016/j.pbb.2005.05.008
  21. Robitaille R, Charlton MP. Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. J Neurosci 12: 297-305, 1992 https://doi.org/10.1523/JNEUROSCI.12-01-00297.1992
  22. Sailer CA, Kaufmann WA, Marksteiner J, Knaus HG. Comperative immunohistochemical distribution of three small-conductance $Ca^{2+}$-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mor Cell Neurosci 26: 458-469, 2004 https://doi.org/10.1016/j.mcn.2004.03.002
  23. Scholz A, Grass M, Vogel W. Properties and functions of calcium- activated $K^+$ channels in small neurons of rat dorsal root ganglion studied in a thin slice preparation. J Physiol 513: 55-69, 1998 https://doi.org/10.1111/j.1469-7793.1998.055by.x
  24. Tanabe M, Gahwiler BH, Geber U. L-type $Ca^{2+}$ channels mediate the slow $Ca^{2+}$-dependent afterhyperpolarization current in rat CA3 pyramidal cells in vitro. J Neurophysiol 80: 2268-2273, 1998 https://doi.org/10.1152/jn.1998.80.5.2268
  25. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531-543, 1998 https://doi.org/10.1016/S0896-6273(00)80564-4
  26. Xing J-L, Hu S-J. Relationship between calcium-dependent potassium channel and ectopic spontaneous discharges of injured dorsal root ganglion neurons in the rat. Brain Res 838: 218-221, 1999 https://doi.org/10.1016/S0006-8993(99)01682-0
  27. Yamazumi I, Okuda T, Koga Y. Involvement of potassium channels in spinal antinociceptions induced by fentanyl, clonidine and bethanechol in rats. Jap J Pharmacol 87: 268-276, 2001 https://doi.org/10.1254/jjp.87.268
  28. Yazejian B, DiGregorio DA, Vergara JL, Poage RE, Meriney SD, Grinnell AD. Direct measurements of presynaptic calcium and calcium-activated potassium currents regulating neurotransmitter release at cultured Xenopus nerve-muscle synapses. J Neurosci 17: 2990-3001, 1997 https://doi.org/10.1523/JNEUROSCI.17-09-02990.1997
  29. Zhang X-F, Gopalakrishnan M, Shieh C-C. Modulation of action potential firing by iberiotoxin and NS1619 in rat dorsal root ganglion neurons. Neuroscience 122: 1003-1011, 2003 https://doi.org/10.1016/j.neuroscience.2003.08.035