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Control of Rigid Robots Equipped with Brushed DC-Motors as Actuators

Victor M. Hernandez-Guzman, Victor Santibaiiez, and Gilberto Herrera

Abstract: We extend the application of an adaptive controller previously introduced in the
literature under the assumption that no actuator dynamics exists to the case when the dynamics of
the brushed DC-motors used as actuators is not neglected. Convergence to the desired positions
is ensured without requiring any feedback to cope with the additional electric dynamics. The
proposed control scheme does not require the exact knowledge of neither robot nor actuator

parameters to select controller gains.

Keywords: Adaptive control, brushed DC-motor actuators, Lyapunov stability, position

regulation, robot control.

1. INTRODUCTION

Although most robots are equipped with brushed
DC-motors as actuators at present, most control theory
developed for robots assumes that the actuator
dynamics can be neglected and that torque can be
directly used as the control input. The main reason for
this is that the introduction of an electrical system
between the control input and the torque actually
applied to the robot links complicates the controller
design in robotics [1]. However, as pointed out in [2],
neglecting the actuator dynamics may result in
degradation of the closed loop performance. Similar
observations have motivated lots of work on robot
control taking into account the dynamics of the
brushed DC-motors used as actuators (see [1,3-5] and
references therein). Most of these results rely on either
electric current measurements or the exact knowledge
of several of the actuator parameters. Other works
avoiding some of these drawbacks rely, however, on
torque measurements [6].

In this note we extend the application of a
controller previously introduced under the assumption
that no actuator dynamics exists [7] to the case when
the dynamics of the brushed DC-motors used as
actuators is taken into account. It is important to stress
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that, contrary to previous works on the subject [8],
this is done without requiring any additional loop
designed to cope with the additional -electrical
subsystem dynamics, i.e., both electric current and
torque measurements are avoided. Further, contrary to
the common assumption in the literature we do not
require the actuator electric dynamics to be “fast
enough”. We stress that the exact knowledge of
neither robot nor actuator parameters is not required.
These features represent the main contribution of our
work.

Our results rely on the following facts: the torque
constant equals the back-electromotive constant in a
brushed DC-motor, we obtain a linear version of
controller introduced in [7] whose stability analysis is
similar to the one presented in [9] and we introduce a
novel error variable to describe the electric subsystem.

Along this paper we use the following notation: ””

represents both the Euclidean norm of a vector and the
spectral norm of a matrix whereas 2, () and A, ()
stand, respectively, for the minimum and maximum
eigenvalues of a symmetric matrix.

This note is organized as follows. In Section 2, we
present the dynamic model that we consider. In
Section 3, we present our main result. Some
simulation results are presented in Section 4, whereas
some concluding remarks are given in Section 5.

2. THE DYNAMIC MODEL CONSIDERED

The dynamic model of an n degrees of freedom
rigid robot equipped only with revolute joints and
with n brushed DC-motors as actuators is given as

[1}:
di
L—+Ri+K,g=u, 1
= 59 1)

D(q)g+C(q,9)q + 8(q) = K1, @
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where geR" the link positions,
C(q,9)q 1is the Coriolis and centrifugal effects term
and g(g) is the gravitational effect term, given as

0Uy ()
g@)=—;

We define the gear ratio positive definite constant

represents

diagonal matrix as 6 = Ng, where 6 e R" represents
the actuator positions, and D(q)= M(q)+ NJN
where M(q) and J are nxn symmetric and
positive definite matrices representing the links and
actuators inertia, respectively. Furthermore, J is
constant and diagonal. Variables i,u € R” represent,

respectively, the electric current and voltage in the
brushed DC-motors armature circuits, while L, R,

K,and K, are nxn diagonal and positive definite

matrices representing the inductance, resistance, back-
electromotive  constant and torque constant,
respectively. Finally, we define K, =K,N and
K, = NK, whereas the applied torques are defined
as 1=K, i As it is by now well known, four
important properties of this model are [9,10,Ch. 4]:

f(%D(q)—aq,q»q:o, Vi e R, 3)
D(q)=C(q,9)+CT (g,9), (4)
\C@.»s| <k |¥|ls], Vg.y.s€R", (5)
”%q_) <k,, VqeR", (6)

where k. and k, are finite positive constants. An

important property of brushed DC-motors is related to
power conservation. The electric power transformed
into mechanical power is given in terms of the back-

electromotive force, e, =K,0, and the electric

current through the armature circuits P, =ebTefi
whereas the resulting mechanical power is given in
terms of velocity and the electromagnetic torque

P,=¢"t,,, where T,n =K, i. From power
conservation P, =PF,, we obtain K, =K, which

implies, because of the diagonal property of all the
involved matrices, that K, =K,,. In this note we

consider the following assumptions.
Assumption 1: We can write:

RK,'g(q) = ®(q)8", 7

where ®(g) is a nxm known matrix whereas 6"

is a mx1 unknown parameter vector which is
assumed to be constant. We also assume that m > n.

, where U ¢(q) is the potential energy.

Assumption 2: Given (7) and any constant vector
g; € R" there exist two diagonal positive definite
mxm arbitrary matrices T' and I’ such that
ro’ (9)= ro’ (qd)KmR_l, where I' can be chosen
without requiring the exact knowledge of any of the
elements of matrix X mR_l.

Assumption 3: Matrix ®(g) and the parameter

vector 8" introduced in (7) are defined in such a way
that product ®(g, )FCDT (g;) is a nxn diagonal,

positive semidefinite matrix.

Some remarks on these assumptions are in order.
First, we stress that Assumption 1 holds even if all
actuators have different dynamics, i.e., even if all

diagonal entries of matrix RK,:,1 are different.
Second, the last part of Assumption 2 is possible only
if all elements of both matrices T and T” can be
chosen arbitrarily. Third, let m; 21, i=1,...,n, be
integers representing the number of components of
vector 6%, given in (7), arising from the i- th
component of vector RK,;lg(q), ie, g (@R/K,,;.
According to this, the number of unknown parameters
in 0" is given as m=X'm, Assumption 3 is
possible if matrix ®(q) is chosen as follows: first
row: only elements from column 1 to column my are

nonzero, second row: only elements from column
my +1 to column my +m, are nonzero, ..., n-—th

row: only elements from column (Efzi’_lmiJJrl to

column X;_'m; are nonzero. Note that this requires

m>n. We give an application example for the three
assumptions in Section 4.

3. MAIN RESULT

Proposition 1: Consider the dynamic model (1), (2),
together with the following controller:

u==Kpd-Kpd-K,q+P(qq), ®)

6=T0" (gq) [ [~4(r)+e[-G(r) + ()]},

9=diag{ bip }q, 2
pta;

where p=(d/dt) denotes the differential operator,

g; €R" represents the constant desired link
positions and §=g-¢g;. On the other hand,
A=diag{a;}, B=diag{b;} are nxn positive

definite matrices satisfying:
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2My (D(9))

, Ay (LR <1, 10
A (D(gy MR AL 10

A, (B) >
whereas I' =diag{I';} is a mxm arbitrary positive
definite matrix. Under Assumptions 1, 2, and 3 we can
always find a (small) constant scalar &>0, (large
enough) diagonal positive definite matrices K—P,
K_v and a (possibly non positive definite) diagonal

matrix @ ensuring stability of the desired
equilibrium point and convergence ¢(f)—>q,, as
t — oo. Further, this convergence is semiglobal in the
sense that it stands in a domain which can always be
enlarged arbitrarily by choosing suitable controller
gains.

Proof: Suppose that we can write:

Kp=Kp+eKy +2K, +,, (11)
Kp=Kp-eKy —eK, -3, (12)
K, =K, +B,, (13)
Bi=LR'(Kp + KpB+®(g)T 0" (q,)),  (14)
B, =eLR™'®(q,)TD” (q,), (15)
By = LR (Kpd+e®(q, )T (g,)), (16)

where K, is an arbitrary diagonal positive definite
matrix whereas K, and Kp are also diagonal
positive definite matrices which have to satisfy some

relations to be defined latter. Note that although E[—)

is not required to be positive definite, however a large
positive definite value ensures a large positive definite

Kp. Also note that f;, B, are diagonal positive

definite matrices whereas f, is a diagonal positive

semidefinite matrix under Assumption 3. Replacing
control law (8) in (1), using (11)-(16) as well as the

realization 9=-49+Bg of (9) and defining &=
i R"luc, where u, =-KpG—-Kp3+D(q, )é, we

obtain:

LE =R~ K, (g +e(d— 9)~K, (G +e(§—9)).

a7
Further, if we define £=p-+¢ it is not difficult to

realize that (17) can be replaced by the following
expressions:

Lp=-Rp-Kylg+e(G-9)), (18)
L6 =—Ro-K,[§ +5(G - 9)]. (19)

On the other hand, note that using definitions of &

and u, above as well as Assumption 1 we can write

(2) as:
D(q)§+C(q,9)g + g(@)+ K'plg —8) + KpS o)
= K&+ K, R ®(g)6,
where we define:
'p=K,R'Kp, Kp=K,R'Kp,
8=q4+(K'p) ' glas), 6=06-0". @)

Finally, the closed loop dynamics is represented by
(18)-(20) and:

9=-A49+ By, (22)
6 =T0" (q,)[~¢~ej+e3]. (23)
It is not difficult to verify that (§,4,9,6,p,0)
=(0,0,0,0,0,0) is an equilibrium point of this closed
loop dynamics. Stability of this equilibrium point is

analyzed using the following Lyapunov function
candidate:

W(§,4,9,0,p,0) =V (§,4,9) + V5(8) + V5 (p,0),
V(qa q.9 '9) = 8(V3 (qa Q) + V4 (éa q.’ '9)) + Vl (é, qa '9),

N U _
K(q,q,3)=5qTD(q)q +>8"KpB '9+d,

1
+5(q—6)TK'p(q—6)+Ug(q>,

< 1 71
V2<9)=59T(r) '4,
3(4,9)= 4" D(9)q.
Vi(d.4,9) =-9" D(9)4,

1 _

V5<p,o)=%pTLp+5csTKva ILs, (24)

where I is an arbitrary mxm diagonal positive
definite matrix and d, = —% g(qy )T (X' p)_1 g(gy)
—Ug(gy4)- Function V(4,4,9) has been proposed in

[9] where it was shown to be positive definite and
radially unbounded if:

A (K'p) > kg, (25)

- -1
1 An&p) o L A BpBT) g
2 dM 2 dy

Note that we form W just by adding V, and V;

to the Lyapunov function proposed in [9], i.e., V.
This represents a simple manner to embed the
adaptive dynamics and the actuator electric dynamics,
both introduced in the present work, in the stability
analysis presented in [9]. Using Assumption 2, the
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fact that K, =K, properties (3)-(6) and following
the procedure presented in [9] we find that the time
derivative of W along the trajectories of the closed
loop system (18)-(20), (22)-(23) can be bounded as:

WS—%WTQW*ZZT_QZZ
| i
_ 8[59"" (B)d,, ~dys k|9~ ke ||‘J||}||‘1||2

—me(KDB‘lA)—exM (KD)}HS 2

27)

where w= (”ch,”S GH)Ta d, =

LleD", z=(s
A (D(q9)), dyy =hy (D(q)) and:

l4ll>

§1(1,1) a1(1,2)
A=\0oy Gipsy O |
0 0 2X,(R)
51(1,1) =20, (K'p) — 2kg,
Q(I,Z) = 51(2,1) ==y (K'p)—hpr (Kp) — kg,
a1(2,2) =3 A (KpB~'4),

Qan Dan

O = Yo D02 0 ,

0 0 23,(K,K;'R)

. _ 1 -1 -
o) an - —23)“’” (KpB ™ 4), 0 e Ly (B)d,,,
Q2 1,2) = Q2 @D = _KM (A)dM-

Remark 1: Instrumental to obtain (27) are the fact
that K, = K;, and Assumption 2: both of them allow
to cancel some terms appearing in V, VS and V,.

On the other hand, we stress that it is common in
literature to use, for the electric subsystem, an error
variable defined as the difference between the actual
applied toque and its desired value. An important
drawback of such an approach is that either the exact

knowledge of the torque constant K,, or torque
measurement is required. We avoid this inconvenience
by introducing the error variable §=i—R_1uc.
Finally, we stress that the linearity of u, allows to

express —LR‘luc as a linear combination of the
state variables ¢, ¢ and & This is important to

complete the error dynamics (17): controller (8)
contributes with the required terms to complete such
an error equation.

Recall that matrices R and X,K, 'R are
diagonal positive definite, hence conditions for
positive definiteness of (O, are:

Don(K'p) — kg M (KB ' 4)
> €.

Mo (K'P) > kg
" & s (K p) + M (K p) + kg P
(28)
whereas Q_2 is positive definite if:
A (KpA
A, (KpB14)>0, KAy (29)

2y (Ady TP

Finally, by defining x=(G",47,9",47.p",6" )" we
realize that the third right hand term of (27) is
negative if:

11
—| =N, (B)d,, —dy | > x|, 30
Zkiz n(B)d, M} || (30)
whereas the last term in (27) is negative if:
-1
Mn(KpB A) A)>8 31

2:(Kp)

Conditions (28)-(31), (25) and (26) are used in [9] to
show that in the case when the dynamics of the
actuators is not taken into account, i.e., when
p=0=0, controller gains always exist such that both
the right hand of (27) is negative and V, given in
(24), is positive definite and radially unbounded in a
domain which can be arbitrarily enlarged. This is
shown to be possible by choosing a sufficiently small
e>0 and, simultaneously, A,(B) and X, (B)
sufficiently large. Further, first expression in (10) is a
sufficient condition for the existence of such a domain
[9] (see (30) above). We realize that in the case when
the electric dynamics of actuators is taken into
account, ie., p=#0, o#0, the fore mentioned
conditions also ensure stability of the equilibrium
point (4,4,9,0,p,0)=(0,0,0,0,0,0). In Remark 2
we explain how to compute controller gains satisfying
all of the fore mentioned conditions without requiring
the exact knowledge of neither robot nor actuator
parameters. The proposed procedure requires that a)

second expression in (10) be satisfied and b) F,,
given as follows, be a positive definite matrix:

-1
-1
F2:{I—SLR"1+8LR_1(I—LR_1A) B} , (32)

where [ stands for the »nxn identity matrix. Hence,
a) and b) are additional conditions which have to

be satisfied by the controller gains. Note that b) is
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always satisfied by choosing a small enough &. On computer program to make computations and to verify
the other hand, a small 4 satisfying (10) does not all conditions simplifies the search of controller gains.
interfere with the existence of controller gains claimed Finally, note that we have to choose a small enough
above because, we recall, such existence is basically A, to satisfy (10), and a small &, to render matrix
established by a large matrix B and a small . F, positive definite, in order to ensure that K, and

Finally, convergence §(r)—>0 as 7— oo is proven K are also positive definite, which makes easier to

invoking standard adaptive control arguments. It is not ) .. .
difficult to show from (27) that §, ¢, 9, p, and ensure that Kp is also positive definite. Thus, we

¢ are square integrable. Being § a bounded square also ensure that K'p and K, are positive definite.

integrable function whose time derivative (§=¢ ) is
4. SIMULATION RESULTS

also bounded we ensure convergence ¢—>0 as
t—co in a domain which can arbitrarily enlarged. We consider the robot model presented in [11]. This

This completes the proof of Proposition 1. is a two degrees of freedom (n=2) experimental

Remark 2: Using (11)-(16) we can write: robot which, however, is not equipped with brushed

= _7p-l DC-motors. Hence, we use the following data which
Ky = {K" LRk }FZ’ correspond to the brushed DC-motors model numbers
Kp= E; —eK, —eK, —¢€L Ry, MT—4060-ALYBE (oint 1) and MT-4060-BLYBE
- (joint 2) [12,pp.G-11],

——— -1
Kp=|Kp+eK, +eK, +eLRW || I-LR'4]| ,
Kp =| Kp + oKy +oK, + I ] K, = diag{0.573,0.382} [Nm/Amp],

F=Kp—cK, —eLR™"¥ + FF, + ¥, K, = diag{0.573,0.382} [Volts/(rad/sec)],
Fy =Kp +8Ky + LR, R=diag{23,1.2[Q],
-1 J = diag{12.43x107%,12.43x10™*} [Kg-m 2],

Fy=(1-1R74) B,

. L=diag{9.6x107,4.6x107} [Hy]
¥=0(g,)I'D" (q4),
and a gear ratio matrix N = diag{l5,15}. The gravity

where F, is given in (32). Note that using upper and effect term is given as:

lower bounds on the values of matrices LR™', K, ‘
and proposing known values for the scalar & and all a(q) = (Ml + Myl gsin(qy) + Myl gsin(q +q;)
other involved matrices we can find upper and lower Ml »gsin(g +q5)

bounds for matrix K,. This computation is

simplified by the fact that all the involved matrices are where  M,l;,l;, j=1,2, represent, respectively,
diagonal. Hence, bounds of these matrices are simply mass, length and center of mass of link j whereas

their largest and their smallest diagonal elements. In

_ 25 - . . .
order to avoid use of the exact values of matrices g =9.81[m/s” ] is gravity acceleration. From this and

LR_I, K, KmR_I we propose to use, for instance, (7) we define:

0.90 times their smallest diagonal element and 1.10 sin(gq,)  sin(g; +¢,) 0

times their largest diagonal elements to consider a CD(CI)={ 0 0 sin(g) +4 )},
10% uncertainty in their nominal values. Using upper ) ~ 1742

and lower bounds for K, we can proceed similarly R (Mil; + Mol)g

to obtain upper and lower bounds for matrices Kp ml T 1

and Kp. Then, use of (21) as well as upper and 0" — R Mylog , (33)
lower bounds on the values of matrix K,R™' allow ml

to compute upper and lower bounds for x’p and &leczg

K, which can be used to verify conditions (28)-(31), - m2 -

(25) and (26). Thus, this procedure allows to select all ie., Assumption 1 is satisfied. We stress that,

gains in controller of Propos‘ition 1 without requiring according to the numerical values presented in [11],
the exact knowledge of neither robot nor actuator we have kg, =80.578 [Ke-m?s?] and k, =0.336

parameters. Although this may require a try-error 5 )
search of the controller gains, however use of a digital (Kg-m]. On the other hand, we can write
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ro’ ()= r'o’ (94 )KmR'I, given in Assumption 2,
as:

Iy sin(gy4) 0
Ty sin(qy4 +q24) 0
0 ['33sin(g;y +g24)
C | )
— 171 18In 0
% ['118in(q4)
K ]
=| =21y sin(gy + gag) 0 ,
Ry
K )
0 —22 1 338i0(g1g + Grg)
i R, i

where we have used the assumption that T and T’
are 3x3 diagonal matrices. Note, for instance, that

. Co K
the previous expression implies T'j; =Ri11r’11. We

recall that I'y; and [, are positive arbitrary
numbers. Hence, for any given I}, there exists a

11 such that this expression is satisfied without

requiring the value of the unknown constant K—Ig”l—.
|

This shows the validity of Assumption 2. Further, it is
not difficult to verify, from (33), that Assumption 3
also stands and that matrix ®(q) has the form

explained in the last paragraph of Section 2 with
m=2, my=1, m=m+my=3. We used the
following controller gains K_Pzdiag{ZOO,ZOO},
Kp = diag{250,250}, K, =diag{90,90}, T = diag
{500,500,500}, 4 =diag{110,110}, B =diag{19,19},
£€=027. These values were selected such that

conditions (28)-(31), (25), (26), (10) are all satisfied
using l|x”<1 and ensuring that F, 1is positive

[Tad] 0s] 04 ]
06 03
* ai(t), qua * ¢2(t), qaq
02 0.1 1v
o o |
e 10 20 30 [) 10 20 30
[ Nm] 50 150 l
300 100
200 Ty (t) T2 (t)
" 50
100 ' k
50
i 10 20 ES 0 10 20 20
t[sec] t[sec]

Fig. 1. Simulation results when the controller of
Proposition 1 is used.

definite. This was verified by using the procedure
described in Remark 2, i.e., only estimated values of
robot an actuator parameters are required. In Fig. 1 we
show the performance obtained with controller of
Proposition 1. The desired values are g;; =n/4 and

g4 =n/8 whereas all initial conditions are set to

zero. Note that convergence to the desired values is
obtained as expected and this is achieved in
approximately 30 seconds. Comparing with time
responses reported in the literature (more than 50 sec.
in [10,pp.215] and more than 200 sec. in [13]) for
linear robot controllers whose gains are selected in
such a way that stability is ensured, we find 30
seconds to be an acceptable time response.

5. CONCLUSIONS

In this note we have presented a control scheme for
position regulation in robot manipulators whose
design takes into account the dynamics of the brushed
DC-motors used as actuators. Measurements of torque
and electric current are avoided. Further, contrary to
the common assumption in the literature we do not
require the actuators electric dynamics time constant
to be small. We also present a design procedure to
select the controller gains without requiring the exact
knowledge of neither robot nor actuator parameters.
As we explain, this can always be done using a try-
error search based on a digital computer program to
verify all the conditions presented in this note.
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