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Discriminative Models for Automatic Acquisition of Translation
Equivalences

Chun-Xiang Zhang, Sheng Li, and Tie-Jun Zhao

Abstract: Translation equivalence is very important for bilingual lexicography, machine
translation system and cross-lingual information retrieval. Extraction of equivalences from
bilingual sentence pairs belongs to data mining problem. In this paper, discriminative learning
methods are employed to filter translation equivalences. Discriminative features including
translation literality, phrase alignment probability, and phrase length ratio are used to evaluate
equivalences. 1000 equivalences randomly selected are filtered and then evaluated. Experimental
results indicate that its precision is 87.8% and recall is 89.8% for support vector machine.
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1. INTRODUCTION

Translation equivalences are very useful in a variety
of applications such as bilingual lexicography [1],
machine translation system [2] and cross-lingual
information retrieval [3]. This is a data-mining
problem. Many methods have been proposed for
acquisition of translation equivalences. For example,
Zhang builds mutual information matrix for a
bilingual sentence pair, where the value for cell of
matrix denotes the point-wise mutual information
between word pair. Box-shaped region whose mutual
information is similar is looked upon as equivalent
phrase pair [4]. Kaji parses source language sentence
and target language sentence. Phrase alignment is
implemented on parsing trees of source and target
sentences according to word alignment results [2]. But
this method is restricted by accuracy of target
language parser and grammar incompatibility of
source-target languages, which leads its performance
unsatisfying. Wong employes translation correspond-
ing tree [5] to specify the correspondence between
parsing tree of source sentence and target sentence,
from which equivalences can be acquired. This partly
solves the problems. Kenji uses translation literality to
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evaluate literality of bilingual sentence pairs and
cleans the corpus in order to improve the quality of
extracted equivalences [6]. But he has not considered
filtering translation equivalences.

In this paper, translation equivalences are extracted
from translation corresponding trees of bilingual
sentence pairs. Discriminative features including
translation literality, phrase alignment probability, and
phrase length ratio are used to evaluate equivalences.
Pearson R correlation coefficient is applied to
evaluate the performance of discriminative features.
At the same time, discriminative learning methods are
employed to filter extracted equivalences. 1000
equivalences randomly selected are filtered and then
evaluated in open test. Experimental results indicate
that its precision is 87.8% and recall is 89.8% for
support vector machine.

2. EXTRACTION OF TRANSLATION
EQUIVALENCES

We extract translation equivalences from translation
corresponding tree of Chinese-English bilingual
sentence pairs. For a bilingual sentence pair (C,E), the
process of equivalence extraction is shown as follows:
1. Tag and parse C and tag E. We assume that T is the

parsing tree of Chinese sentence C.

2. Align words between C and E by word alignment
tool. Extract corresponding words (called word
links) from word alignment results.

3. For each subtree m in parsing tree T.

According to extracted word links, get string s from
E which is the translation of subtree m. m—s is a
translation equivalence.

For example, in the case of following bilingual
sentence pair, the process of extracting equivalences is
shown in Fig. 1.
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Chinese-English bilingual sentence pair:

Chinese: HATBEKEFF MR T

English: We want to have a table near the window.
Word alignment result:

A1 BE2 K3 4 FPS M6 FFT . /8
We/1 want to/2 have/3 a/4 table/5 near/6 the/7 window/8 ./9
(1:1); (2:2); (4:6); (5:8); (7:5); (8:9);

Parsing tree of Chinese sentence:

T

HA /e VO

VO\ ) /usde £ F/ng
%g & F/ng

Extracted translation equivalences:

VO[#/vg B F/ng] — near the window

NP[VO[ % /vg & J* /ng] 8 /usde £ F /ng]—table near the
window

NP[5k/q NP[VO[#/vg & F /ng] ¥ /usde £ T /ng]]—table
near the window

VO[#8 E/vg NP[7k/q NP[VO[#/vg B F/ng]fi/usde T
/ng]]]—want to have a table near the window

Fig. 1. Extract translation equivalences from bilingual
sentence pairs.

3. EVALUATION OF TRANSLATION
EQUIVALENCES

Equivalences extracted from above include lots of
noise because the whole extraction process is
restricted by accuracy of word alignment tool and
Chinese parser. They should be filtered. Left part of
extracted equivalence is a phrase with parsing
information and the right part is only a phrase string.
But when we filter them, phrase strings are only
considered. For example, on determining whether
“VO[5E/vg & F'/ngl—near the window’ is a correct
equivalence, we only consider ‘5E# ' —near the
window’. Here, discriminative features including
translation literality, phrase alignment probability, and
phrase length ratio are utilized to evaluate
equivalences.

3.1. Translation literality

A bilingual sentence pair that has many word
correspondences is more literal. Translation literality
is a widely used measure for weighting literality of
bilingual sentence pairs [6]. It can also be used for
computing the confidence that phrase in source
language can be translated from and to phrase in
target language. Translation literality of equivalence
Ph.—Ph, is usually computed as (1) describes.

Link(Ph,, Ph,)
Num(Ph,) + Num(Ph,)

L(Ph,,Ph,) = €8]

Here, Ph. denotes Chinese phrase of equivalence.
Ph, denotes its English phrase. Link(Ph,,Ph,) denotes
the number of word links between Ph, and Ph,.
Num(X) is the number of words in phrase X.

3.2. Phrase alignment probability

Brown uses P(F|E) to compute the alignment
probability of target language string E given source
language string F' [7]. The alignment probability
P(F\E) is shown in (2).

P(F|E)=

1 lﬂ[ !
1(file) 2)
T Rt
In our approach, IBM Model-1 is applied to
compute word-to-word translation probability #«(f|e)
that a word f'in the source language is translated given
word e in the target language.
Given training data consisting of bilingual sentence
pairs: {(f®,e), s=1,2,-,8%, we use (3) to train word-
to-word translation probability #(f|e).

S
Hfle)=2" c(f e f9),e), 3)
s=1
m !
of 16,/ =LV 507, 1)F Stere). (4)
> (fle) ™ =
k=1

Here A, ! is a normalization factor. c(fle f (S),

e(s)) denotes the expected number of times that word

e connects to word f. We use P(Ph.Ph,) to calculate
the alignment probability between Chinese phrase Ph,
and English phrase Ph. in equivalence. We employ
bilingual corpus including 300000 Chinese-English
bilingual sentence pairs from general domain, which
is developed by MOE-MS Key Laboratory of Natural
Language Processing and Speech, to train word-to-
word translation probability #(f|e).

3.3. Phrase length ratio

The sentence length ratio is a very good indication
of the alignment of a bilingual sentence pair [8]. For a
given equivalence, we use phrase length ratio
(described in formula (5)) to compute the confidence
that phrase in source language can be translated from
and to phrase in target language. For the language pair
of Chinese and English, phrase length can be defined
in several different ways. In general, a Chinese
sentence does not have word boundary information.
So one way to define Chinese phrase length is to
count the number of bytes of the phrase. Another way
is to first segment Chinese sentence into words and
count how many words are in Chinese phrase. For
English phrase, we can count its length in bytes and in
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words.

P(A|Ph,,Ph,)=P(| Ph, |< —>| Ph, || Ph,, Ph,)
;P(|Phc |<_>|Phe Hlphc I9|Phe ‘)
EP(|Phc|_|Phe|) (5)
=P(D(| Ph, |,| Ph, ).

Here, |Ph.|, |Ph. denote the length of Chinese
phrase Ph. and the length of English phrase Ph,
respectively.

The length difference D(|Ph.|,|Ph.) of Chinese
phrase Ph. and English phrase Ph,. is assumed to be a

normal distribution [8]. It is computed according to (6).

| Ph, | —c| Ph, |
J( PR, | +1)o?

Here ¢ is a constant indicating the mean length ratio
which is the expected number of unites in English
phrase Ph,. per unite in Chinese phrase Ph,. ¢ is the
variance of c¢. For training data set {Ph'.—PHh |i=
1,2,...,n}, ¢ is computed according to (7). o’ is
computed as (8) describes.

D(] Phc |7| Phe )= ~N(0,1). (6)

n . n .
¢= Z Num,, 1 (Ph;) Z Num,,i,. (Ph,), N
i=1 i=1

o’ = 1f<(Numum-,e<Ph;'>/ Num, o (PHL)) =€) .(8)
n

i=1

Numpi(X) is the number of unites in phrase X. unit
may be word or character. For equivalence ‘5¢
B —near the window’, Num,, (5 & F)=2,
Num,,ofnear the window)=3, Num pgeere/(5E &)

=3, Num characrer(near the window)=13.
Phrase length ratio is defined in (9):

L = P(D(| Ph, |,| Ph, ])). &)

We employ training data to estimate ¢ and o°. There
are four methods to compute ¢ and o”. So, we obtain 4
kinds of discriminative features according to (6). They
are described in (10).

Ly :c=Num,,,.q(Ph,) Num,,,.;(Ph,),

Ly :¢ = Numiyo,q (Phy) | Num pigpgerer (PR,

Ly € = Nt paeger (Phe) | Nty (P,

Ly :¢ = Numpapacrer (Ph )| NuMcparcror (PR, ).

(10)

We use translation literality L(Ph.Ph.), phrase
alignment probability P(Ph|Ph,), and phrase length
ratio Ly,L,,L3,L, to score for equivalences respectively.
If evaluation score of equivalence is larger, the

confidence that it is correct translation equivalence is
higher. N-Best strategy is employed to select
translation equivalences with high confidence
according to automatic evaluation scores.

4. DISCRIMINATIVE LEARNING

In order to improve filtering performance further, a
linear combination model of multiple features is used
to evaluate extracted equivalences, which will lead
more noise being filtered. Discriminative features
including translation literality L{(Ph.Ph.), phrase
alignment probability P(Ph.,Ph,), and phrase length
ratio L,,L,,L3,L4 are utilized. For a given translation
equivalence Ph.—Ph,, its evaluation score y(Ph.—
Ph,) is calculated (11) describes. If y(Ph.—Ph,) is
larger, the confidence of Ph,—Ph, being a correct
equivalence is higher.

y(Ph, —> Ph) =K * L + Ky * Ly + K3 * Ly + Ky * Ly
+ K5 * L(Ph,,Ph,Y+ K¢ * P(Ph, | Ph,).
(11

So, the classification function can be defined as
h(Ph,—~Ph)=WX+0, where W=(K;,K>,K5,K4,K5,K¢)
and X=(Li,L,,L3,L4,L(Ph.,Ph.), P(Ph;Ph.)). In order
to make the performance of classifier A(Ph.—Ph,)
optimal, we employ training data to train parameters
W and 6. We could ask human to annotate
equivalences. If Ph, can interpret Ph, semantically,
Ph,—Ph, is annotated as a positive instance.
Otherwise it is viewed as a negative instance. Based
on annotated equivalences, we could employ
supervised learning method to train the classifier
h(Ph.—Ph,). Here, we adopt discriminative learning
methods: support vector machine and perceptron
classifier to solve the problem.

We identify the two classes with the symbol y& {-
1,+1}, which indicates negative instance or positive
instance. A training set of instances S={X;, y|i=1,2,
--,n} is given. SVM chooses the optimal hyperplane
W*X+0*=0 which can separate two different classes
with the maximal distance. The optimum separating
hyperplane is found based on the following (12).

Minimize: min{% 43" (12)

subject to the constraint:
They are converted into the following quadratic

i=12,..,n.

programming optimization problem to get a [9].

L . 1< L
Minimize: minJ(a) :5 .Zlaiajyiijin —gai. 13
i,j= i=

subject to the constraint:
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n
Day; =0, a>=0, i=12..,n
i=1
We obtain " and 8" according to (14).
* " * * *
W =Y ayX, 6 =y-WAX,. (14)
i=1

If the problem is not linearly separable, kernel
transformations K (X, Y) over vector spaces can be used
to convert them from its feature space into high-
dimensionality space. Under this situation, the
discrimination function is shown in (15):

n
h(Ph,—> Ph,)=> a; y,K(X, X))+ (15)
i=1

Actually A(Ph.—Ph,)=WX+0 can be viewed as a
perceptron classifier [10].

In this paper, SVM and perceptron classifier are
employed to solve the problem respectively.

5. EXPERIMENT

Method described in Section 2 is used. 286790
translation equivalences are obtained from 100000
Chinese-English bilingual sentence pairs. Perfor-
mances of word alignment tool and Chinese parser are
shown in Table 1.

We randomly select 6041 equivalences from these
286790 translation equivalences. Two human
annotators are asked to manually annotate these 6041
equivalences together. We divide these 6041
equivalences into two parts. One is training data and
the other is test data. They are described in Table 2.

¢ and o are parameters in phrase length ratio
feature of Ly, L,, L;, and Ls. We employ training data
to estimate parameter ¢ according to (7). Parameter o
is estimated by (8).

We use discriminative features mentioned in
Section 3 to score for every equivalence in test data.
Then pearson R correlation coefficient is applied to
evaluate the magnitude of the association between
automatic evaluation and manually-annotated results.
Its computation is described as (16). The evaluation

Table 1. Word alignment tool and Chinese parser.

Precision Recall
Word alignment tool 86% 89%
Chinese parser 78% 79%
Table 2. Training data and test data.
Positive | Negative | Error rate
Training data 3697 1338 26.57%
Test data 743 263 26.14%

Table 3. Pearson R correlation coefficient between

automatic  evaluation and manually-
annotated results.
Pearson R
L(Ph,Ph,) 0.39362
P(Ph.|Ph.) 0.20239
L 0.35263
Ly 0.29717
Ls 0.43276
Ly 0.38780

—&— L(Phc, Phe)

2 Precision

o

——&-— P(Phc| Phe)}

L1

—k—13

100 200 300 400 500 600 700 800 s0c 1000

Value of N ———14

Fig. 2. Filtering performance of discriminative
features under different N-Best strategy.

results are shown in Table 3.
) (> X7~ (X XY Y)
r= - — (16)
J[an2 - X) ]J[nzlv2 -1

From Table 3, we find that L; does better than other
features on evaluating translation equivalences.

We sort translation equivalences in test data
according to automatic evaluation score and employ
N-Best strategy to label equivalences. The front N
equivalences whose scores are highest are labeled as
positive instances and others are labeled as negative
ones. We set N=100,200,300,...,900, and label
equivalences according to evaluation score under
different N-Best strategy. Then automatically-labeled
results are evaluated according to manually-annotated
results. We use precision as measure to evaluate
filtering performance. The evaluation results are
shown in Fig. 2.

From Fig. 2, we can see that L; does better than
other features on filtering performance.

We employ training data to train SVM and
perceptron classifier respectively. We use optimized
SVM and perceptron classifier to classify test data.
Then classifying results are evaluated according to
results given by human annotators. Precision, recall
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Table 4. Filtering performance of translation equiv-

alences.
Precision | Recall F1 Error rate
No-Filtering | 73.9% — — 26.1%
Perceptron 82.0% [90.7% | 86.1% | 18.0%
SVM 87.8% |89.8% | 88.8% 12.2%

and F1 are used as measures to evaluate filtering
performance of classifiers. Equivalences labeled as
positive instances are selected and negative ones are
deleted. We use error rate to evaluate performance of
filtered test data. The results see Table 4. From Table
4, we can find that its precision is 87.8% and recall is
89.8% for SVM. Error rate of test data decreases from
26.14% to 12.2% after filtering. Filtering performance
exceeds no-filtering performance.

6. CONCLUSIONS

In this paper, we extract translation equivalences
from translation corresponding trees of bilingual
sentence pairs. Discriminative features including
translation literality, phrase alignment probability, and
phrase length ratio are used to evaluate equivalences.
At the same time, discriminative learning methods are
applied to filter extracted equivalences. Experimental
results indicate that its precision is 87.8% for SVM,
which exceeds that of translation equivalences without
filtering. Automatically-Filtering can decrease human
labeling cost.
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