DOI QR코드

DOI QR Code

Animal Breeding: What Does the Future Hold?

  • Eisen, E.J. (Animal Science Department., Box 7621, North Carolina State University)
  • Received : 2006.02.15
  • Accepted : 2006.07.10
  • Published : 2007.03.01

Abstract

An overview of developments important in the future of animal breeding is discussed. Examples from the application of quantitative genetic principles to selection in chickens and mice are given. Lessons to be learned from these species are that selection for production traits in livestock must also consider selection for reproduction and other fitness-related traits and inbreeding should be minimized. Short-term selection benefits of best linear unbiased predictor methodology must be weighed against long-term risks of increased rate of inbreeding. Different options have been developed to minimize inbreeding rates while maximizing selection response. Development of molecular genetic methods to search for quantitative trait loci provides the opportunity for incorporating marker-assisted selection and introgression as new tools for increasing efficiency of genetic improvement. Theoretical and computer simulation studies indicate that these methods hold great promise once genotyping costs are reduced to make the technology economically feasible. Cloning and transgenesis are not likely to contribute significantly to genetic improvement of livestock production in the near future.

Keywords

References

  1. Anderson, L. 2001. Genetic dissection of phenotypic diversity in farm animals. Nature Rev. Genet. 2:130-138. https://doi.org/10.1038/35052563
  2. Ashwell, M. S., C. P. Van Tassell and T. S. Sonstegard. 2001. A genome scan to identify quantitative trait loci affecting economically important traits in a US Holstein population. J. Dairy Sci. 84:2535-2542. https://doi.org/10.3168/jds.S0022-0302(01)74705-4
  3. Berg, R. T. and L. E. Walters. 1983. The meat animal: Changes and challenges. J. Anim. Sci. 57(Supp. 2):133-146.
  4. Caballero, A., E. Santiago and M. A. Toro. 1996. Systems of mating to reduce inbreeding in selected populations. Anim. Sci. 62:431-442. https://doi.org/10.1017/S1357729800014971
  5. Casas, E., S. D. Shackelford, J. W. Keele, R. T. Stone, S. M. Kappes and M. A. Koohmaraie. 2000. Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J. Anim. Sci. 78:560-569. https://doi.org/10.2527/2000.783560x
  6. Charlier, C., W. Coppetiers, F. Farnir, L. Grobart, P. L. Leroy, C. Michaux, M. Mni, A. Schwers, P. Vanmanshoven, R. Hanset and M. Georges. 1995. The mh gene causing double-muscling in cattle maps to bovine chromosome 2. Mamm. Genome. 6:788-792. https://doi.org/10.1007/BF00539005
  7. Colleau, J. J. 1998. Relative economic efficiency of embryo transfer and marker assisted selection in dairy cattle selection nuclei. Proc. 6th World Congr. Genet. Appl. Livest. Prod. 25:419-422.
  8. Craig, J. V. 1982. Behavioral and genetic adaptation of laying hens to high-density environments. Biosci. 32:33-37. https://doi.org/10.2307/1308752
  9. Dekkers, J. C. M. and F. Hospital. 2002. The use of molecular genetics in the improvement of agricultural populations. Nature Rev. Genet. 3:22-32. https://doi.org/10.1038/nrg701
  10. Dunnington, E. A. and P. B. Siegel. 1996. Long-term divergent selection for eight-week body weight in White Plymouth Rock chickens. Poult. Sci. 75:1168-1179. https://doi.org/10.3382/ps.0751168
  11. Eisen, E. J., J. P. Hanrahan and J. E. Legates. 1973. Effects of population size and selection intensity on correlated responses to selection for postweaning gain in mice. Genet. 74:157-170.
  12. Eisen, E. J. 1980. Conclusions from long-term selection experiments with mice. Z. Tier. Züchtgsbiol. 97:305-319.
  13. Eisen, E. J. 1998. Selection theory and experiments. Proc. 6th World Congr. Genet. Appl. Livest. Prod. 26:67-68.
  14. Fairfull, R. W., I. M. McMillan and W. M. Muir. 1998. Poultry breeding: Progress and prospects for genetic improvement of egg and meat production. Proc. 6th World Congr. Genet. Appl. Livest. Prod. 24:271-278.
  15. Georges, M. and J. M. Massey. 1991. Velogenetics, or synergistic use of marker-assisted selection and germ-line manipulation. Theriogenol. 35:151-159. https://doi.org/10.1016/0093-691X(91)90154-6
  16. Georges, M. 1998. Mapping genes underlying production traits in livestock. In Animal Breeding Technology for the 21st century. (Ed. A. J. Clark). Harwood, Amsterdam, pp. 78-101.
  17. Gimelfarb, A. and R. Lande. 1994. Simulation of marker-assisted selection in hybrid populations. Genet. Res. 63:39-47. https://doi.org/10.1017/S0016672300032067
  18. Griffing, B. 1967. Selection in reference to biological groups. I. Individual and group selection applied to populations of unordered groups. Aust. J. Biol. Sci. 10:127-139.
  19. Grobet, L., L. J. R. Martin, D. Poncelot, D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Menissier, J. Massabanda, R. Fries, R. Hansett and M. Georges. 1997. A deletion in the bovine myostatin gene causes the doublemuscled phenotype. Nature Genet. 17:71-74. https://doi.org/10.1038/ng0997-71
  20. Grundy, B., A. Caballero, E. Santiago and W. G. Hill. 1994. A note on using biased parameter values and non-random mating to reduce rate of inbreeding in selection programmes. Anim. Prod. 59:465-468. https://doi.org/10.1017/S0003356100008011
  21. Haley, C. S. and P. M. Visscher. 1998. Strategies to utilize marker- QTL associations. J. Dairy Sci. 81(Supp. 2):85-97. https://doi.org/10.3168/jds.S0022-0302(98)70157-2
  22. Haley, C. 1999. Advances in quantitative trait loci mapping. In From Jay Lush to Genomics: Visions for Animal Breeding and Genetics. (Ed. J. C. M. Dekkers, S. J. Lamont and M. F. Rothschild). Iowa State University, Ames, Iowa, pp. 47-59.
  23. Havenstein, G. B., P. R. Ferket, S. E. Schneideler and B. T. Larson. 1994. Growth, livability and feed conversion of 1957 vs. 1991 broilers when fed "Typical" 1957 and 1991 broiler diets. Poult. Sci. 73:1785-1794. https://doi.org/10.3382/ps.0731785
  24. Henderson, C. R. 1949. Estimation of changes in herd environment. J. Dairy Sci. 32:709.
  25. Henderson, C. R. and R. L. Quass. 1976. Multiple trait evaluation using relatives' records. J. Anim. Sci. 43:1188-1197. https://doi.org/10.2527/jas1976.4361188x
  26. Hohenboken, W. D. 1998. Physiological limits to selection in beef and dairy cattle: Evidence and expectations from different sources. Proc. 35th Meeting of Sociedade Brasileire de Zootecnia, pp. 371-397.
  27. Holl, J. W., J. P. Cassady, D. Pomp and R. K. Johnson. 2004. A genome scan for quantitative trait loci and imprinted regions affecting reproduction in pigs. J. Anim. Sci. 82:3421-3429. https://doi.org/10.2527/2004.82123421x
  28. Hospital, F. and A. Charcosset. 1997. Marker-assisted introgression of quantitative trait loci. Genet. 147:1469-1485.
  29. Hunton, P. 1990. Industrial-breeding and selection. In: Poultry Breeding and Genetics. (Ed. R. D. Crawford). Elsevier, Amsterdam, pp. 985-1028.
  30. Kambadur, R., M. Sharma, T. P. L. Smith and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-915. https://doi.org/10.1101/gr.7.9.910
  31. Kanis, E., K. H. De Greef, A. Hiemstra and J. A. M. van Arendonk. 2005. Breeding for societally important traits in pigs. J. Anim. Sci. 83:948-957. https://doi.org/10.2527/2005.834948x
  32. Kashi, Y., E. Hallerman and M. Soller. 1990. Marker-assisted selection of candidate bulls for progeny testing programmes. Anim. Prod. 51:63-74. https://doi.org/10.1017/S0003356100005158
  33. Lande, R. and R. Thompson. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genet. 124:734-756.
  34. Lange, C. and J. C. Whittaker. 2001. On prediction of genetic values in marker-assisted selection. Genet. 159:1375-1381.
  35. Mackinnon, M. J. and M. A. J. George. 1998. Marker-assisted preselection of young dairy sires prior to progeny-testing. Livest. Prod. Sci. 54:229-250. https://doi.org/10.1016/S0301-6226(97)00169-3
  36. Malek, M., J. C. M. Dekkers, H. K. Lee, T. J. Bass and M. F. Rothschild. 2001. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mamm. Genome. 12:630-636. https://doi.org/10.1007/s003350020018
  37. McDaniel, B. T. 2001. Uncontrolled inbreeding: J. Dairy Sci. 84 (E. Supp.): E185-E186. http://www.adsa.org/jds/papers/2001/jds_es185.pdf. https://doi.org/10.3168/jds.S0022-0302(01)70214-7
  38. A. C., A. M. Lawler and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new $TGF-{\beta}$ superfamily member. Nature (Lond.) 387:83-90 https://doi.org/10.1038/387083a0
  39. McPherron, A. C. and S. J. Lee. 1997. Double-muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94:12457-12461. https://doi.org/10.1073/pnas.94.23.12457
  40. Meuwissen, T. H. E. and M. E. Goddard. 1996. The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evol. 28:161-176. https://doi.org/10.1186/1297-9686-28-2-161
  41. Meuwissen, T. H. E. 1997. Maximizing the response of selection with a predefined rate of inbreeding. J. Anim. Sci. 75:934-940. https://doi.org/10.2527/1997.754934x
  42. Muir, W. M. 1996. Group selection for adaptation to multiple-hen cages: Selection program and direct responses. Poult. Sci. 75:447-458. https://doi.org/10.3382/ps.0750447
  43. Muir, W. M. 2000. The interaction of selection intensity, inbreeding depression, and random genetic drift on short-term and long-term response to selection: Results using finite locus and finite population size models incorporating directional dominance. Proc. Amer. Soc. Anim. Sci. http://www.asas.org/0602.pdf.
  44. Muir, W. M. 2002. Use of molecular genetics in poultry breeding. Proc. 7th World Congr. Genet. Appl. Livest. Prod. 30:193-200.
  45. Muir, W. M. and A. Schinckel. 2002. Incorporation of competitive effects in breeding programs to improve productivity and animal welfare. Proc. 7th World Cong. Genet. Appl. Livest. Prod. 32:35-38.
  46. Muir, W. M. 2005. Incorporation of competitive effects in forest tree or animal breeding programs. Genet. 170:1247-1259. https://doi.org/10.1534/genetics.104.035956
  47. Newman, S. 1994. Quantitative- and molecular-genetic effects on animal well-being: Adaptive mechanisms. J. Anim. Sci. 72:1641-1653. https://doi.org/10.2527/1994.7261641x
  48. Odum, T. W. 1993. Ascites syndrome: Overview and update. Poult. Digest 52:14-22
  49. Ollivier, L. 1999. Scientific challenges to animal breeding and genetics. In From Jay Lush to Genomics: Visions for Animal Breeding and Genetics (Ed. J. C. M. Dekkers, S. J. Lamont and M. F. Rothschild). Iowa State University, Ames, Iowa, pp. 24-34.
  50. Peripato, A. C., R. A. de Brito, T. T. Vaughn, L. S. Pletscher, S. R. Matioli and J. M. Cheverud. 2002. Quantitative trait loci for maternal performance for offspring survival in mice. Genet. 162:1341-1353.
  51. Pursel, V. G. 1998. Modification of production traits. In Animal Breeding Technology for the 21st Century (Ed. A. J. Clark). Harwood, Amsterdam, pp. 183-200.
  52. Quinton, M. A., C. Smith and M. E. Goddard. 1992. Comparison of selection methods at the same level of inbreeding. J. Anim. Sci. 70:1060-1067 https://doi.org/10.2527/1992.7041060x
  53. Roberts, R. C. 1979. Side effects of selection for growth in laboratory mice: Livest. Prod. Sci. 6:93-104. https://doi.org/10.1016/0301-6226(79)90034-4
  54. Robeson, B. L., E. J. Eisen and J. M. Leatherwood. 1981. Adipose cellularity, serum glucose, insulin and cholesterol in polygenic obese mice fed high-fat or high-carbohydrate diets. Growth 45:198-215.
  55. Rocha, J. L., D. Pomp and L. D. Van Vleck. 2002. QTL analysis in livestock. In Quantitative Trait Loci: Methods and Protocols (Ed. N. J. Camp and A. Cox). Humana. Totowa, New Jersey, pp. 311-346.
  56. Rohrer, G. A. and J. Keele. 1998. Identification of quantitative trait loci affecting carcass composition in swine. II. Muscling and wholesale product yield traits. J. Anim. Sci. 76:2255-2262. https://doi.org/10.2527/1998.7692255x
  57. Rothschild, M. F. and L. L. Christian. 1988. Genetic control of front leg weakness in Duroc swine. I. Direct response to five generations of divergent selection. Livest. Prod. Sci. 19:459-471. https://doi.org/10.1016/0301-6226(88)90012-7
  58. Rothschild, M. F., C. Jacobson, D. A. Vaske, C. K. Tuggle, L. Wang, T. Short, G. Erchardt, S. Sasaki, A. Vincent, D. G. McLaren, O. Southwood, H. van der Steen, A. Mileham and G. Plastow. 1996. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc. Natl. Acad. Sci. USA 93:201-205. https://doi.org/10.1073/pnas.93.1.201
  59. Rothschild, M. F. and M. Soller. 1997. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8:13-20.
  60. Ruane, J., G. Klemetsdal and E. Sehested. 1997. Views on the potential impact of cloning in animal breeding and production. Acta. Agric. Scand. Sect. A. Anim. Sci. 47:209-212.
  61. Santiago, E. and A. Caballero. 1995. Effective size of populations under selection. Genet. 139:1013-1030.
  62. Sax, K. 1923. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genet. 8:552-560.
  63. Scholtz, M. M., C. Z. Roux and S. J. Schoeman. 1990. An investigation into the consequences of selection for growth, size and efficiency. S. Afr. J. Anim. Sci. 20:170-173.
  64. Schrooten, C., H. Bovenhuis, W. Coppieters and J. A. M. Van Arendonk. 2000. Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle. J. Dairy Sci. 83:795-806. https://doi.org/10.3168/jds.S0022-0302(00)74942-3
  65. Smith, C. 1998. Introduction: Current animal breeding. In Animal Breeding Technology for the 21st Century (Ed. A. J. Clark). Harwood, Amsterdam, pp. 1-10.
  66. Smith, L. A., B. G. Cassell and R. E. Pearson. 1998. The effects of inbreeding in the lifetime production of dairy cattle. J. Dairy Sci. 81:2729-2737. https://doi.org/10.3168/jds.S0022-0302(98)75830-8
  67. Soller, M. and I. Medjugorac. 1999. A successful marriage: Making the transition from quantitative trait locus mapping to marker-assisted selection. In From Jay Lush to Genomics: Visions for Animal Breeding and Genetics (Ed. J. C. M. Dekkers, S. J. Lammond and M. F. Rothschild). Iowa State University, Ames, Iowa, pp. 85-96.
  68. Spelman, R. J. and H. Bovenhuis. 1998. Moving from QTL experimental results to the utilization of QTL in breeding programmes. Anim. Genet. 29:77-84. https://doi.org/10.1046/j.1365-2052.1998.00238.x
  69. Spelman, R. J. and D. J. Garrick. 1998, Genetic and economic responses for within-family marker-assisted selection in dairy cattle breeding schemes. J. Dairy Sci. 81:2942-2950. https://doi.org/10.3168/jds.S0022-0302(98)75856-4
  70. Stone, R. T., J. W. Keele, S. D. Shackelford, S. M. Kappes and M. Koohmaraie. 1999. A primary screen of bovine genome for quantitative trait loci affecting carcass and growth traits. J. Anim. Sci. 77:1379-1384. https://doi.org/10.2527/1999.7761379x
  71. Tatsuda, K. and K. Fujinaka. 2001. Genetic mapping of the QTL affecting body weight in chickens using a $F_2$ family. Br. Poult. Sci. 42:333-337. https://doi.org/10.1080/00071660120055296
  72. Toro, M. A. and M. Perez-Grundy. 1990. Optimization of selection response under restricted inbreeding. Genet. Sel. Evol. 22:93-107. https://doi.org/10.1186/1297-9686-22-1-93
  73. Toro, M. A., B. Nieto and C. Salgado. 1988. A note on minimization of inbreeding in small scale breeding programmes. Livest. Prod. Sci. 20:317-323. https://doi.org/10.1016/0301-6226(88)90026-7
  74. Van Vleck, L. D. 1999. Implications of cloning for breed improvement strategies: Are traditional methods of animal improvement obsolete? J. Anim. Sci. Proc. Amer. Soc. Anim.Sci. http://www.asas.org/JAS/papers/1999/am/am010.pdf.
  75. Van Vleck, L. D. and J. P. Cassady. 2005. Unexpected variance components with a true model containing genetic competitive effects. J. Anim. Sci. 83:68-74. https://doi.org/10.2527/2005.83168x
  76. Verrier, E., J. J. Colleau and J. L. Foulley. 1993. Long-term effects of selection based on the animal model BLUP in a finite population. Theor. Appl. Genet. 87:446-454.
  77. Visscher, P. M., S. Van Der Beek and C. S. Haley. 1998. Marker assisted selection. In Animal Breeding Technology for the 21st Century (Ed. A. J. Clark). Harwood, Amsterdam, pp. 119-136
  78. Weigel, K. A. 2001. Controlling inbreeding in modern breeding programs. J. Dairy Sci. 84 (E. Supp.): E177-E184. http://www.adsa.org/jds/papers/2001/jds_es177.pdf https://doi.org/10.3168/jds.S0022-0302(01)74467-0
  79. Weller, J. I. 2001. Quantitative Trait Loci in Animals. CAB International, Oxon.
  80. Whittaker, J. C. 2001. Marker-assisted selection and introgression. In Handbook of Statistical Genetics (Ed. D. J. Balding, M. Bishop and C. Cannings). John Wiley and Sons, Chichester, pp. 673-693.
  81. Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind and K. H. S. Campbell. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810-813. https://doi.org/10.1038/385810a0
  82. Woolliams, J. A. 1989. Modifications to MOET nucleus breeding schemes to improve rates of genetic progress and decrease rates of inbreeding in dairy cattle. Anim. Prod. 49:1-14. https://doi.org/10.1017/S0003356100004190
  83. Yonash, N., H. H. Cheng, J. Hillel, D. E. Heller and A. Cahaner. 2001. DNA microsatellites linked to quantitative trait loci affecting antibody response and survival rate in meat-type chickens. Poult. Sci. 80:22-28. https://doi.org/10.1093/ps/80.1.22
  84. Yancovich, A., I. Levin, A. Cahaner and J. Hillel. 1996. Introgression of the avian naked neck gene assisted by DNA fingerprints. Anim. Genet. 27:149-156. https://doi.org/10.1111/j.1365-2052.1996.tb00942.x
  85. Zhang, W. and C. Smith. 1992. The use of marker-assisted selection with linkage disequilibrium. Theor. Appl. Genet. 83:813-820.
  86. Zhang, W. and C. Smith. 1993. The use of marker-assisted selection with linkage disequilibrium: the effects of several additional factors. Theor. Appl. Genet. 86:492-496. https://doi.org/10.1007/BF00838565

Cited by

  1. Contribuição genética ótima aplicada à seleção de ovinos Santa Inês vol.51, pp.6, 2016, https://doi.org/10.1590/S0100-204X2016000600006
  2. Maximizing the Selection Response by Optimal Quantitative Trait Loci Selection and Control of Inbreeding in a Population with Different Lifetimes between Sires and Dams vol.21, pp.11, 2007, https://doi.org/10.5713/ajas.2008.80020
  3. Variation in autosomal and sex-linked genetic effects for growth traits in Markhoz goat using multivariate animal models vol.52, pp.6, 2007, https://doi.org/10.1007/s11250-020-02300-y