DOI QR코드

DOI QR Code

Electrochemistry of bis(1,10-phenanthroline)copper(II)-sodium dodecyl sulfate solution in the presence of MgCl2

염화마그네슘 존재 하의 비스(1,10-페난트롤린) 구리(II)-도데실황산나트륨 용액의 전기화학

  • Ko, Young Chun (Department of Nano-Chemical/Environmental Engineering)
  • 고영춘 (대불대학교 나노화학환경공학과)
  • Received : 2007.08.07
  • Accepted : 2007.10.31
  • Published : 2007.12.25

Abstract

Electrochemistry of 1.0 mM bis(1,10-phenanthroline)copper(II) $(Cu(ph){_2}^{2+})$ in 100 mM NaCl solution including 27 mM $MgCl_2$ with and without sodium dodecyl sulfate (SDS) is studied. In the presence of SDS, $E_{pa}$ and $E_{1/2}$ of $Cu(ph){_2}^{2+}$ by adding $Mg^{2+}$ shifts to a positive direction compared to the SDS free. The intersection of two lines on ${\Delta}E_p$ vs -log[SDS] plot is determined as a critical micelle concentration (CMC). When $Mg^{2+}$ is added, it seems that the double layer became more compact. And the formation of micelles is retarded.

염화마그네슘 존재하의 비스(1,10-페난트롤린)구리(II) $(Cu(ph){_2}^{2+})$-도데실황산나트륨(SDS)의 전기화학적 거동들이 고찰되었다. $Mg^{2+}$의 첨가에 의한 SDS의 용액에서 $Cu(ph){_2}^{2+}$$E_{pa}$$E_{1/2}$ 값은 양의 값으로 이동했다. 1.0 mM $Cu(ph){_2}^{2+}$의 27 mM $MgCl_2$을 포함한 100mM NaCl 용액에서, ${\Delta}E_p$ 대 -log[SDS]로 도시한 그림에서 두 선의 교차점을 임계미셀농도로 결정하였다 (순환 전압전류법에 의해 3.48 mM SDS; 표면 장력법에 의해 3.34 mM SDS). $Cu(ph){_2}^{2+}$의 용액에 $Mg^{2+}$가 첨가되었을 때 유리탄소전극에서의 이중층의 거리가 감소했고 미셀형성이 지연되었다.

Keywords

References

  1. S. Hattori, Y. Wada, S. Yanagida and S. Fukuzumi, J. Am. Chem. Soc., 127, 9648-9654 (2005) https://doi.org/10.1021/ja0506814
  2. S.-J. Liy, C. -H. Huang and C.-C. Chang, Mat. Chem. and Phy., 82, 551-556 (2003). https://doi.org/10.1016/S0254-0584(03)00210-4
  3. C. Wang, E. Wyn-Jones, J. Sidhu and K. C. Tam, Langmuir, 23, 1635-1639 (2007) https://doi.org/10.1021/la0625897
  4. D. Mitra, I. Chakraborty, S. C. Bhattacharya and S. P. Moulik, Langmuir, 23, 3049-3061 (2007) https://doi.org/10.1021/la062830h
  5. M. S. Bakshi, A. Kaura, J. D. Miller and V. K. Paruchuri, J. Coll. Interf. Sci., 278, 472-477 (2004) https://doi.org/10.1016/j.jcis.2004.06.022
  6. G. Caminati, N. J. Turro and D. A. Tomalia, J. Am. Chem. Soc., 112, 8515-8522 (1990) https://doi.org/10.1021/ja00179a041
  7. S. Yamada, K. Hojo, H. Yoshimura, and K. Ishikawa, J. of Biochem., 117, 1162-1169 (1995) https://doi.org/10.1093/oxfordjournals.jbchem.a124839
  8. Y. C. Ko and K. H. Chung, Anal. Sci. & Tech., 11, 151- 155 (1998)
  9. A. Jaramillo, A. Marino and A. Brajter-Toth, Anal. Chem. 65, 3441-3446 (1993) https://doi.org/10.1021/ac00071a018
  10. C.-W. Lee and F. C. Anson, Inorg. Chem. 23, 837-844 (1984) https://doi.org/10.1021/ic00175a009
  11. C. -W. Lee and F. C. Anson, J. Phys. Chem. 87, 3360- 3362 (1983) https://doi.org/10.1021/j100240a036
  12. B. Lindman and H. Wennerstrm, Top. Curr. Chem., 87, 1-83 (1980) https://doi.org/10.1007/BFb0048488
  13. Y. C. Ko, J. Ree and K. H. Chung, Bull. Korean. Chem. Soc., 18, 113-116 (1997) https://doi.org/10.1007/BF02707207
  14. Y. C. Ko, J. of Dabul University, 4, 545-551 (1998)