DOI QR코드

DOI QR Code

Functional Amino Acids and Fatty Acids for Enhancing Production Performance of Sows and Piglets

  • Kim, Sung Woo (Texas Tech University, Texas A&M University) ;
  • Mateo, Ronald D. (Texas Tech University) ;
  • Yin, Yu-Long (Chinese Academy of Sciences) ;
  • Wu, Guoyao (Texas Tech University, Texas A&M University, Chinese Academy of Sciences)
  • 발행 : 2007.02.01

초록

The growth and health of the fetus and neonate are directly influenced by the nutritional and physiological status of sows. Sows are often under catabolic conditions due to restrict feeding program during pregnancy and low voluntary feed intake during lactation. The current restrict feeding program, which aims at controlling energy intake during gestation, results in an inadequate supply of dietary protein for fetal and mammary gland growth. Low voluntary feed intake during lactation also causes massive maternal tissue mobilization. Provision of amino acids and fatty acids with specific functions may enhance the performance of pregnant and lactating sows by modulating key metabolic pathways. These nutrients include arginine, branched-chain amino acids, glutamine, tryptophan, proline, conjugated linoleic acids, docosahexaenoic acid, and eicosapentaenoic acid, which can enhance conception rates, embryogenesis, blood flow, antioxidant activity, appetite, translation initiation for protein synthesis, immune cell proliferation, and intestinal development. The outcome is to improve sow reproductive performance as well as fetal and neonatal growth and health. Dietary supplementation with functional amino acids and fatty acids holds great promise in optimizing nutrition, health, and production performance of sows and piglets. (Supported by funds from Texas Tech, USDA, NLRI-RDA-Korea, and China NSF).

키워드

참고문헌

  1. Anderson, M. and K. L. Fritsche. 2002. (n-3) Fatty acid and infectious disease resistance. J. Nutr. 132:3566-3576. https://doi.org/10.1093/jn/132.12.3566
  2. Arbuckle, L. D. and S. M. Innis. 1993. Docohexaenoic acid is transferred through maternal diet to milk and to tissues of naturally milk fed piglets. J. Nutr. 123:1668-1675. https://doi.org/10.1093/jn/123.10.1668
  3. Arntzen, K. J., O. L. Brekke, L. Vatten and R. Austgulen. 1998. Reduced production of PGE2 and PGF2 alpha from decidual cell cultures supplemented with N-3 polyunsaturated fatty acids. Prostaglandins Other Lipid Mediat. 56:183-195. https://doi.org/10.1016/S0090-6980(98)00048-3
  4. Baker, D. H. 1997. Ideal amino acid profiles for swine and poultry and their applications in feed formulation. Biokyowa Tech. Rev. 9:1-24.
  5. Ban, H., K. Shigemitsu, T. Yamatsuji, M. Haisa, T. Nakajo, M. Takaoka, T. Nobuhisa, M. Gunduz, N. Tanaka and Y. Naomoto. 2004. Arginine and leucine regulate p70 S6 kinase and 4E-BP1 in intestinal epithelial cells. Int. J. Mol. Med. 13:537-543.
  6. Bazinet, R. P., E. G. McMillan and S. C. Cunnane. 2003. Dietary alpha-linolenic acid increases the n-3 PUFA content of sows milk and the tissues of the suckling piglet. Lipids 38:1045-1049. https://doi.org/10.1007/s11745-006-1159-9
  7. Brazle, A. E., B. J. Johnson, E. C. Titgemeyer, S. K. Webel and D. L. Davis. 2005. Fatty acid composition of the porcine conceptus in response to maternal omega-3 fatty acid supplementation. J. Anim. Sci. 83 (Suppl. 1):410(Abstr.).
  8. Brazle, A. E., B. J. Johnson, E. C. Titgemeyer, S. K. Webel and D. L. Davis. 2006. Fatty acid composition of the pig conceptus and endometrium in response to maternal omega-3 fatty acid supplementation. J. Anim. Sci. 84(Suppl. 2):77(Abstr.).
  9. Bressner, G., S. W. Kim and R. A. Easter. 2000. Effects of spritweaning on the performance of primiparous sows and the performance nursing pigs. J. Anim. Sci. 78 (Suppl. 1): 240(Abstr.)
  10. Bronte, V. and P. Zanovello. 2005. Regulation of immune responses by L-arginine metabolism. Nature Rev. Immunol. 5:641-654. https://doi.org/10.1038/nri1668
  11. Brosnan, J. T. 2001. Amino acids, then and now - a reflection on Sir Hans Kreb's contribution to nitrogen metabolism. IUBMB Life 52:265-270. https://doi.org/10.1080/152165401317291101
  12. Coeffier, M., S. Claeyssens, B. Hecketsweiler, A. Lavoinne, P. Ducrotte and P. Dechelotte. 2003. Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa. Am. J. Physiol. 285:G266-G273.
  13. Cole, G. M., G. P. Lim, F. Yang, B. Tter, A. Begum, Q. Ma, M. E. H. White and S. A. Frautschy. 2005. Prevention of Alzheimers disease: Omega 3 fatty acid and phenolic anti-oxidant interventions. Neurobiol. Aging 26S:S133-S136.
  14. Cori, B., M. Rhoads, R. J. Harrell, A. T. Blikslager, O. T. Phillips, L. A. Gatlin, X. M. Niu and J. Odle. 2005. Rotaviral enteritis stimulates ribosomal p70 s6 kinase and increases intestinal protein synthesis in neonatal pigs. FASEB J. 19:A976.
  15. Crawford, M. A. 2000. Placental delivery of arachidonic and docosahexaenoic acids: Implication for the lipid nutrition of preterm infants. Am. J. Clin. Nutr. 71:275S-284S. https://doi.org/10.1093/ajcn/71.1.275S
  16. Crawford, M. A., K. Casteloe, K. Ghebremeskel, A. Phylactos, L. Skirvin and F. Stacey. 1997. Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of preterm babies? Am. J. Clin. Nutr. 66:1032S-1041S. https://doi.org/10.1093/ajcn/66.4.1032S
  17. Curthoys, N. P. and M. Watford. 1995. Regulation of glutaminase activity and glutamine metabolism. Annu. Rev. Nutr. 15:133- 159. https://doi.org/10.1146/annurev.nu.15.070195.001025
  18. Delion, S., S. Chalon, J. Hérault, D. Guilloteau, J. C. Besnard and G. Durand. 1994. Chronic dietary -linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. J. Nutr. 124:2466-2476. https://doi.org/10.1093/jn/124.12.2466
  19. Dourmad, J. Y., M. Etienne, A. Prunier and J. Noblet. 1994. The effect of energy and protein intake of sows on their longevity: a review, Livest. Prod. Sci. 40:87-97. https://doi.org/10.1016/0301-6226(94)90039-6
  20. Elias, S. L. and S. M. Innis. 2001. Newborn infant plasma trans, conjugated linoleic, n-6, n-3 fatty acids are related to maternal plasma fatty acids, length of gestation and birth weight and length. Am. J. Clin. Nutr. 73:807-814. https://doi.org/10.1093/ajcn/73.4.807
  21. Escobar, J., J. W. Frank, A. Suryawan, H. V. Nguyen, S. R. Kimball, L. S. Jefferson and T. A. Davis. 2005. Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. Am. J. Physiol. 288:E914-E921.
  22. Escobar, J., J. W. Frank, A. Suryawan, H. V. Nguyen, S. R. Kimball, L. S. Jefferson and T. A. Davis. 2006. Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs. Am. J. Physiol. 290:E612-E621.
  23. Esteban, S., C. Nicolaus, A. Garmundi, R. E. Rial, A. B. Rodriguez, E. Ortega and C. B. Ibars. 2004. Effect of orally administered L-tryptophan on serotonin, melatonin, and the innate immune response in the rat. Mol. Cell. Biochem. 267:39-46. https://doi.org/10.1023/B:MCBI.0000049363.97713.74
  24. Field, C. J., I. R. Johnson and P. D. Schley. 2002. Nutrients and their role in host resistance to infection. J. Leuk. Biol. 71:16- 32.
  25. Flynn, N. E. and G. Wu. 1996. An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am. J. Physiol. 271:R1149-R1155.
  26. Flynn, N. E., C. J. Meininger, T. E. Haynes and G. Wu. 2002. The metabolic basis of arginine nutrition and pharmacotherapy. Biomed. Pharmacother. 56:427-438. https://doi.org/10.1016/S0753-3322(02)00273-1
  27. Flynn, N. E., D. A. Knabe, B. K. Mallick and G. Wu. 2000. Postnatal changes of plasma amino acids in suckling pigs. J. Anim. Sci. 78:2369-2375 https://doi.org/10.2527/2000.7892369x
  28. Frank, J. W., J. Escobar, H. V. Nguyen, S. C. Jobgen, T. A. Davis, and G. Wu. 2006. Oral N-carbamylglutamate supplementation increases growth rate in sow-reared piglets. FASEB J. A266.3.
  29. Fritsche, K. L., D. W. Alexander, N. A. Cassity and S. C. Huang. 1993b. Maternally-supplied fish oil alters piglet immune cell fatty acid profile and eicosanoid production. Lipids 28:677-682. https://doi.org/10.1007/BF02535986
  30. Fritsche, K. L., S. C. Huang and N. A. Cassity. 1993a. Enrichment of omega-3 fatty acids in suckling pigs by maternal dietary fish oil supplementation. J. Anim. Sci. 71:1841-1847. https://doi.org/10.2527/1993.7171841x
  31. Fu, W., T. E. Haynes, R. Kohli, J. Hu, W. Shi, T. E. Spencer, R. J. Carroll, C. J. Meininger and G. Wu. 2005. Dietary supplementation with L-arginine reduces fat mass in Zucker diabetic fatty rats. J. Nutr. 135:714-721. https://doi.org/10.1093/jn/135.4.714
  32. Fumarola, C., S. La Monica and G. G. Guidotti. 2005. Amino acid signaling through the mammalian target of rapamycin (mTOR) pathway: Role of glutamine and of cell shrinkage. J. Cell. Physiol. 204:155-165. https://doi.org/10.1002/jcp.20272
  33. Gao, H., T. E. Spencer, G. Wu, G. A. Johnson and F. W. Bazer. 2006. mTOR signaling mechanisms in the ovine uterus. Biol. Reprod. Special Issue p. 123.
  34. Grimble, R. F. 1998. Modification of inflammatory aspects of immune function by nutrients. Nutr. Res. 18:1297-1317 https://doi.org/10.1016/S0271-5317(98)00108-0
  35. Grimble, R. F. 2001. Nutritional modulation of immune function. Proc. Nutr. Soc. 60:389-397 https://doi.org/10.1079/PNS2001102
  36. Ha, E. M., C. T. Ch, Y. S. Bae and W. J. Lee. 2005. A direct role for dual oxidase in Drosophila gut immunity. Science 310:847-850. https://doi.org/10.1126/science.1117311
  37. Harris, W. S., W. E. Connor and S. L. Lindsey. 1984. Will dietary $\omega$-3 fatty acids change composition of human milk? Am. J. Clin. Nutr. 40:780-785. https://doi.org/10.1093/ajcn/40.4.780
  38. Hornstra, G. 2000. Essential fatty acids in mothers and their neonates. Am. J. Clin. Nutr. 71:1262S-1269S. https://doi.org/10.1093/ajcn/71.5.1262s
  39. Innis, S. M. 1991. Essential fatty acids in growth and development. Prog. Lipid Res. 30:39-103. https://doi.org/10.1016/0163-7827(91)90006-Q
  40. Innis, S. M. and S. L. Elias. 2003. Intakes of essential n-6 and n-3 polyunsaturated fatty acids among pregnant Canadian women. Am. J. Clin. Nutr. 77:473-478. https://doi.org/10.1093/ajcn/77.2.473
  41. Ji, F., G. Wu, J. R. Blanton and S. W. Kim. 2005. Weight and compositional changes in pregnant gilts and its implication to nutrition. J. Anim. Sci. 83:366-375. https://doi.org/10.2527/2005.832366x
  42. Jobgen, W. S., S. K. Fried, W. J. Fu, C. J. Meininger and G. Wu. 2006. Regulatory role for the arginine-nitric oxide pathway in energy-substrate metabolism. J. Nutr. Biochem. 17:571-588. https://doi.org/10.1016/j.jnutbio.2005.12.001
  43. Kim, S. W. and R. A. Easter. 2003. Amino acid utilization for reproduction in sows. Page 203-222 in Amino Acids in Animal Nutrition. J. P. F. D'Mello, ed. CABI Publishing, Wallingford, UK.
  44. Kim, S. W., G. Wu and D. H. Baker. 2005. Amino acid nutrition of breeding sows during gestation and lactation. Pig News Info. CABI. 26:89N-99N.
  45. Kim, S. W., L. E. Hulbert, H. A. Rachuonyo and J. J. McGlone. 2004. Relative availability of iron in mined humic substances for weanling pigs. Asian-Aust. J. Anim. Sci. 17:1266-1270 https://doi.org/10.5713/ajas.2004.1266
  46. Kim, S. W., R. L. McPherson and G. Wu. 2004. Dietary arginine supplementation enhances the growth of milk-fed young piglets. J. Nutr. 134:625-630. https://doi.org/10.1093/jn/134.3.625
  47. Kim, S. W., R. D. Mateo, G. Wu, J. A. Carroll and I. Shinzato. 2006. Dietary L-arginine supplementation affects immune status of pregnant gilts. FASEB J. A266.1.
  48. Kim, S. W., R. L. McPherson and G. Wu. 2004a. Dietary arginine supplementation enhances the immune status of milk-fed young pigs. FASEB J. 18:A378.
  49. Kim, S. W., R. L. McPherson and G. Wu. 2004b. Dietary arginine supplementation enhances the growth of milk-fed young pigs. J. Nutr. 134:625-630. https://doi.org/10.1093/jn/134.3.625
  50. Kwon, H., T. E. Spencer, F. W. Bazer and G. Wu. 2003. Developmental changes of amino acids in ovine fetal fluids. Biol. Reprod. 68:1813-1820. https://doi.org/10.1095/biolreprod.102.012971
  51. Maclennan, P. A., K. Smith, B. Weryk, P. W. Watt and M. J. Rennie. 1988. Inhibition of protein breakdown by glutamine in perfused rat skeletal muscle. FEBS Lett. 237:133-136. https://doi.org/10.1016/0014-5793(88)80186-8
  52. Maclennan, P. A., R. A. Brown and M. J. Rennie. 1987. A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett. 215:187-191. https://doi.org/10.1016/0014-5793(87)80139-4
  53. Martin, P. M., A. E. Sutherland and L. J. Van Winkle. 2003. Amino acid transport regulates blastocyst implantation. Biol. Reprod. 69:1101-1108. https://doi.org/10.1095/biolreprod.103.018010
  54. Mateo, R. D., G. Wu, J. A. Carroll, I. Shinzato and S. W. Kim. 2006. Dietary L-arginine supplementation improves pregnancy outcome in gilts. J. Anim. Sci. 84(Suppl. 2):7-8.
  55. Mattos, R., C. R. Staples and W. W. Thatcher. 2000. Effects of dietary fatty acids on reproduction in ruminants. Rev. Reprod. 5:38-45. https://doi.org/10.1530/ror.0.0050038
  56. McCowen, K. C. and B. R. Bistrian. 2003. Immunonutrition: Problematic or problem solving? Am. J. Clin. Nutr. 77:764-770. https://doi.org/10.1093/ajcn/77.4.764
  57. McEntee W. J., and T. J. Cook. 1991. Serotonin, memory and the aging brain. Psychopharmacol. 103:143-149. https://doi.org/10.1007/BF02244194
  58. McPherson, R. L., F. Ji, G. Wu and S. W. Kim. 2004. Fetal growth and compositional changes of fetal tissues in the pigs. J. Anim. Sci. 82:2534-2540. https://doi.org/10.2527/2004.8292534x
  59. Meijer, A. J. and P. F. Dubbelhuis. 2004. Amino acid signaling and the integration of metabolism. Biochem. Biophys. Res. Commun. 313:397-403. https://doi.org/10.1016/j.bbrc.2003.07.012
  60. Melchior, D., N. Le Floc'h and B. Seve. 2003. Effect of chronic lung inflammation on tryptophan metabolism in piglets. Adv. Exp. Med. Biol. 527:359-362.
  61. Muskiet, F. A. J., M. R. Fokkema, A. Schaafsma, E. R. Boersma, and M. A. Crawford. 2004. Is decahexaenoic acid (DHA) essential?: Lessons from DHA status regulation, our ancient diet, edpidemiology and randomized controlled trials. J. Nutr. 134:183-186. https://doi.org/10.1093/jn/134.1.183
  62. Newsholme, P., L. Brennnan, B. Rubi and P. Maechler. 2005. New insights into amino acid metabolism, beta-cell function and diabetes. Clin. Sci. 108:185-194. https://doi.org/10.1042/CS20040290
  63. Olsen, S. F., J. D. Sorensen, N. J. Secher, M. Hedegaard, T. B. Hentiksen, H. S. Hansen and A. Grant. 1992. Randomised controlled trial of effect of fish-oil supplementation on pregnancy duration. Lancet 25:1003-1007.
  64. Owens, S. and S. M. Innis. 1998. Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitter in frontal cortex caused by a linoleic and $\alpha$-linolenic acid deficient diet in formula fed piglets. J. Nutr. 129:2088-2093.
  65. Parrybillings, M., J. Evans, P. C. Calder and E. A. Newsholme. 1990. Does glutamine contribute to immunosuppression after major burns? Lancet 336:523-525. https://doi.org/10.1016/0140-6736(90)92083-T
  66. Platten, M., P. P. Ho, S. Youssef, P. Fontoura, H. Garren, E. M. Hur, R. Gupta, L. Y. Lee, B. A. Kidd, W. H. Robinson, R. A. Sobel, M. L. Selley and L. Steinman. 2005. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Sci. 310:850-855. https://doi.org/10.1126/science.1117634
  67. Ramsay, T. G., J. Karousis, M. E. White and C. K. Wolverton. 1991. Fatty acid metabolism by the porcine placenta. J. Anim. Sci. 69:3645-3654. https://doi.org/10.2527/1991.6993645x
  68. Rice, R. 1999. Focus on omega-3. Ingred. Health Nutr. 2:11-15.
  69. Robinson, D. R., L. L. Xu, S. Tateno, M. Guo and R. B. Colvin. 1993. Suppression of autoimmune disease by dietary n-3 fatty acids. J. Lipid Res. 34:1435-1444.
  70. Rooke, J. A., A. G. Sinclair and M. Ewen. 2001a. Changes in piglet composition at birth in response to increasing maternal intake of long chain n-3 polyunsaturated fatty acids are nonlinear. Br. J. Nutr. 86:461-470. https://doi.org/10.1079/BJN2001422
  71. Rooke, J. A., A. G. Sinclair and S. A. Edwards. 2001b. Feeding tuna oil to the sow at different times during pregnancy has different effects on piglet long-chain polyunsaturated fatty acid composition at birth and subsequent growth. Br. J. Nutr. 86:21- 30. https://doi.org/10.1079/BJN2001363
  72. Rooke, J. A., A. G. Sinclair, S. A. Edwards, R. Cordoba, S. Pkiyachi, P. C. Penny, P. Penny, A. M. Finch and G. W. Horgan. 2001c. The effect of feeding salmon oil to sows throughout pregnancy on pre-weaning mortality of piglets. Anim. Sci. 73:489-500. https://doi.org/10.1017/S135772980005846X
  73. Rooke, J. A., I. M. Bland and S. A. Edwards. 1998. Effect of feeding tuna oil or soybean oil as supplements to sow in late pregnancy on piglet tissue composition and viability. Br. J. Nutr. 80:273-280. https://doi.org/10.1017/S0007114598001329
  74. Rooke, J. A., M. Shanks and S. A. Edwards. 2000. Effect of offering maize, linseed or tuna oils throughout pregnancy and lactation on sow and piglet tissue composition and piglet performance. Anim. Sci. 71:289-299. https://doi.org/10.1017/S1357729800055132
  75. Sastry, P. S. 1985. Lipids of nervous tissue: composition and metabolism. Prog. Lipid Res. 24:69-176. https://doi.org/10.1016/0163-7827(85)90011-6
  76. Self, J. T., T. E. Spencer, G. A. Johnson, J. Hu, F. W. Bazer and G. Wu. 2004. Glutamine synthesis in the developing porcine placenta. Biol. Reprod. 70:1444-1451. https://doi.org/10.1095/biolreprod.103.025486
  77. Shi, W., C. J. Meininger, T. E. Haynes, K. Hatakeyama and G. Wu. 2004. Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem. Biophys. 41:415-433. https://doi.org/10.1385/CBB:41:3:415
  78. Simopoulos, A. P. 1991. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54:438-463. https://doi.org/10.1093/ajcn/54.3.438
  79. Spencer, J. D., L. Wilson, S. K. Webel, R. L. Moser and D. M. Webel. 2004. Effect of feeding protected n-3 polyunsaturated fatty acids ($Fertilium^{TM}$) on litter size in gilts. J. Anim. Sci. 82 (Suppl. 1):211(Abstr.).
  80. Stead, L. M., J. T. Brosnan, M. E. Brosnan, D. E. Vance and R. L. Jacobs. 2006. Is it time to reevaluate methyl balance in humans? Am. J. Clin. Nutr. 83:5-10. https://doi.org/10.1093/ajcn/83.1.5
  81. Taugbol, O., T. Framstad and K. Saarem. 1993. Supplements of cod liver oil to lactating sows. Influence on milk fatty acid composition and growth performance of piglets. Zentralbl Veterinarmed A. 40:437-443. https://doi.org/10.1111/j.1439-0442.1993.tb00650.x
  82. Thulin, A. J., G. L. Allee, D. L. Harmon and D. L. Davis. 1989. Utero-placental transfer of octanoic, palmitic and linoleic acids during late gestation in gilts. J. Anim. Sci. 67:738-745. https://doi.org/10.2527/jas1989.673738x
  83. Tischler, M. E., M. Desautels and A. L. Goldberg. 1982. Does leucine, leucyl-transfer RNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J. Biol. Chem. 257:1613-1621.
  84. Trottier, N. L. and L. J. Johnston. 2001. Feeding gilts during development and sows during gestation and lactation. Page 725-769 in Swine Nutrition. 2nd (Ed. A. J. Lewis and L. L. Southern), CRC Press, New York.
  85. Trottier, N. L., C. F. Shipley and R. A. Easter. 1997. Plasma amino acid uptake by the mammary gland of the lactating sow. J. Anim. Sci. 75:1266-1278. https://doi.org/10.2527/1997.7551266x
  86. Turek, J. J., I. A. Schoenlein, B. A. Watkins, W. G. Van Alstine, L. K. Clark and K. Knox. 1996. Dietary polyunsaturated fatty acids modulate responses of pigs to mycoplasma hyopneumonia infection. J. Nutr. 126:1541-1548. https://doi.org/10.1093/jn/126.6.1541
  87. Uauy, R. and C. Castillo. 2003. Lipid requirement of infants: Implications for nutrient composition of fortified complementary foods. J. Nutr. 133:2962S-2972S. https://doi.org/10.1093/jn/133.9.2962S
  88. Watford, M. and G. Wu. 2005. Glutamine metabolism in uricotelic species: variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis. Comp. Biochem. Physiol. B. 140:607-614. https://doi.org/10.1016/j.cbpc.2004.12.009
  89. Webel, S. K., E. R. Otto-Tice, R. L. Moster and D. E. Orr, Jr. 2004. Effect of feeding duration of protected n-3 polyunsaturated fatty acid ($Fertilium^{TM}$) on litter size and embryo survival in sows. J. Anim. Sci. 82(Suppl. 1):212(Abstr.).
  90. Webel, S. K., E. R. Otto, D. M. Webel, R. L. Moser, J. D. Spencer and D. E. Orr. 2003. Effect of protected n-3 polyunsaturated fatty acids ($Fertilium^{TM}$) on litter size in sows. J. Anim. Sci. 81 (Suppl. 1):18 (Abstr.). https://doi.org/10.2527/2003.81suppl_318x
  91. Wu, G. 1996. Effects of concanavalin A and phorbol myristate acetate on glutamine metabolism and proliferation of porcine intraepithelial lymphocytes. Comp. Biochem. Physiol. 114A:363-368.
  92. Wu, G. 1997. Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am. J. Physiol. 272:G1382-G1390.
  93. Wu, G. and C. J. Meininger. 2002. Regulation of nitric oxide synthesis by dietary factors. Annu. Rev. Nutr. 22:61-86. https://doi.org/10.1146/annurev.nutr.22.110901.145329
  94. Wu, G. and D. A. Knabe. 1994. Free and protein-bound amino acids in sow's colostrums and milk. J. Nutr. 124:415-424. https://doi.org/10.1093/jn/124.3.415
  95. Wu, G. and J. R. Thompson. 1990. The effect of glutamine on protein turnover in chick skeletal muscle in vitro. Biochem. J. 265:593-598. https://doi.org/10.1042/bj2650593
  96. Wu, G. and J. T. Self. 2005. Amino acids: metabolism and functions. In: Encyclopedia of Animal Science (Ed. W. G. Pond and A. W. Bell). Marcel Dekker, Inc., New York, pp. 9-12.
  97. Wu, G. and S. M. Morris, Jr. 1998. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336:1-17. https://doi.org/10.1042/bj3360001
  98. Wu, G., C. J. Field and E. B. Marliss. 1991. Glutamine and glucose metabolism in rat splenocytes and mesenteric lymph node lymphocytes. Am. J. Physiol. 260:E141-E147.
  99. Wu, G., D. A. Knabe and S. W. Kim. 2004c. Arginine nutrition in neonatal pigs. J. Nutr. 134:2783S-2390S. https://doi.org/10.1093/jn/134.10.2783S
  100. Wu, G., D. A. Knabe, N. E. Flynn, W. Yan and S. P. Flynn. 1996b. Arginine degradation in developing porcine enterocytes. Am. J. Physiol. 271:G913-G919.
  101. Wu, G., F. W. Bazer, J. Hu, G. A. Johnson and T. E. Spencer. 2005. Polyamine synthesis from proline in the developing porcine placenta. Biol. Reprod. 72:842-850. https://doi.org/10.1095/biolreprod.104.036293
  102. Wu, G., F. W. Bazer, T. A. Cudd, C. J. Meininger and T. E. Spencer. 2004a. Maternal nutrition and fetal development. J. Nutr. 134:2169-2172. https://doi.org/10.1093/jn/134.9.2169
  103. Wu, G., F. W. Bazer, J. M. Wallace and T. E. Spencer. 2006. Intrauterine growth retardation: Implications for the animal sciences. J. Anim. Sci. 84:2316-2337. https://doi.org/10.2527/jas.2006-156
  104. Wu, G., F. W. Bazer, W. Tuo and S. P. Flynn. 1996a. Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol. Reprod. 54:1261-1265. https://doi.org/10.1093/biolreprod/54.6.1261
  105. Wu, G., J. R. Thompson and V. E. Baracos. 1991. Glutamine metabolism in skeletal muscle from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus). Biochem. J. 274:769-774. https://doi.org/10.1042/bj2740769
  106. Wu, G., L. A. Jaeger, F. W. Bazer and J. M. Rhoads. 2004b. Arginine deficiency in premature infants: biochemical mechanisms and nutritional implications. J. Nutr. Biochem. 15:442-451. https://doi.org/10.1016/j.jnutbio.2003.11.010
  107. Wu, G., N. E. Flynn, S. P. Flynn, C. A. Jolly and P. K. Davis. 1999. Dietary protein or arginine deficiency impairs constitutive and inducible nitric oxide synthesis by young rats. J. Nutr. 129:1347-1354. https://doi.org/10.1093/jn/129.7.1347
  108. Wu, G., S. A. Meier and D. A. Knabe. 1996c. Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J. Nutr. 126:2578-2584. https://doi.org/10.1093/jn/126.10.2578
  109. Wu, G., Y. Z. Fang, S. Yang, J. R. Lupton and N. D. Turner. 2004d. Glutathione metabolism and its implications for health. J. Nutr. 134:489-492. https://doi.org/10.1093/jn/134.3.489
  110. Xia, Y., H. Y. Wen, M. E. Young, P. H. Guthrie, H. Taegtmeyer and R. E. Kellems. 2003. Mammalian target of rapamycin and protein kinase A signaling mediate the cardiac transcriptional response to glutamine. J. Biol. Chem. 278:13143-13150. https://doi.org/10.1074/jbc.M208500200
  111. Zhou, R. Y., J. Peng, Z. L. Liu and Z. F. Fang. 2006. Effects of biocom as a replacement of glutamine on performance and blood biochemical indexes of early weaned piglets. Asian-Aust. J. Anim. Sci. 19:872-876. https://doi.org/10.5713/ajas.2006.872
  112. Zijlstra, R. T., K-Y. Whang, R. A. Easter and J. Odle. 1996. Effect of feeding a milk replacer to early-weaned pigs on growth, body composition, and small intestinal morphology, compared with suckled littermates. J. Anim. Sci. 74:2948-2959. https://doi.org/10.2527/1996.74122948x
  113. Zimmer, L., S. Delion-Vancassel, G. Durand, D. Guilloteau, S. Bodard, J. C. Besnard and S. Chalon. 2000. Modification of dopamine neurotransmission in the nucleus accubens of rats deficient in n-3 polyunsaturated fatty acids. J. Lipid Res. 41:32-40.

피인용 문헌

  1. 2-DE and MS analysis of interactions betweenLactobacillus fermentum I5007 and intestinal epithelial cells vol.28, pp.23, 2007, https://doi.org/10.1002/elps.200700166
  2. Long-term feeding effects of dietary protein levels on egg production, immunocompetence and plasma amino acids of laying hens in subtropical condition vol.94, pp.2, 2010, https://doi.org/10.1111/j.1439-0396.2008.00898.x
  3. Effect of different levels of diet methionine and metabolisable energy on broiler performance and immune system vol.22, pp.2, 2011, https://doi.org/10.1080/09540105.2010.530249
  4. Dietary arginine supplementation alleviates immune challenge induced by Salmonella enterica serovar Choleraesuis bacterin potentially through the Toll-like receptor 4-myeloid differentiation factor 88 signalling pathway in weaned piglets vol.108, pp.06, 2012, https://doi.org/10.1017/S0007114511006350
  5. Towards amino acid recommendations for specific physiological and patho-physiological states in pigs vol.71, pp.03, 2012, https://doi.org/10.1017/S0029665112000560
  6. Leucine and methionine deficiency impairs immunity to gastrointestinal parasites during lactation vol.109, pp.02, 2013, https://doi.org/10.1017/S0007114512000931
  7. Effect of feeding sows on rations enriched with conjugated linoleic acid (CLA) and the growth capacity and survival of their piglets vol.60, pp.6, 2013, https://doi.org/10.11118/actaun201260060081
  8. Effects of different levels of dietary crude protein and threonine on performance, humoral immune responses and intestinal morphology of broiler chicks vol.16, pp.1, 2014, https://doi.org/10.1590/S1516-635X2014000100005
  9. Analysis of Possible Influence of Conjugated Linoleic Acid on Growth Performance and Losses of Piglets vol.50, pp.1, 2014, https://doi.org/10.1111/rda.12443
  10. live vaccine in weaned pigs vol.68, pp.1, 2014, https://doi.org/10.1080/1745039X.2013.869988
  11. vol.48, pp.2, 2015, https://doi.org/10.1111/are.12913
  12. Top-dressing 1% arginine supplementation in the lactation diet of sows does not affect the litter performance and milk composition vol.46, pp.8, 2016, https://doi.org/10.1590/0103-8478cr20141067
  13. Glutamine Ameliorates Mucosal Damage Caused by Immune Responses to Duck Plague Virus vol.15, pp.2, 2017, https://doi.org/10.1177/1559325817708674
  14. GC–MS Metabolomics Identifies Metabolite Alterations That Precede Subclinical Mastitis in the Blood of Transition Dairy Cows vol.16, pp.2, 2017, https://doi.org/10.1021/acs.jproteome.6b00538
  15. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, and antioxidative ability of grass carp, Ctenopharyngodon idella vol.43, pp.4, 2017, https://doi.org/10.1007/s10695-017-0348-1
  16. The role of methionine on metabolism, oxidative stress, and diseases vol.49, pp.12, 2017, https://doi.org/10.1007/s00726-017-2494-2
  17. Identification and Characterization of Diploid and Tetraploid in Platycodon grandiflorum vol.72, pp.1, 2017, https://doi.org/10.1007/s11130-016-0589-7
  18. Effects of different n-6 to n-3 polyunsaturated fatty acids ratio on reproductive performance, fecal microbiota and nutrient digestibility of gestation-lactating sows and suckling piglets vol.88, pp.11, 2017, https://doi.org/10.1111/asj.12819
  19. Regulation of intestinal health by branched-chain amino acids pp.13443941, 2017, https://doi.org/10.1111/asj.12937
  20. Protein and Amino Acid Composition of Indian Himalayan Snow Trout and Their Dietary Significance pp.2250-1746, 2018, https://doi.org/10.1007/s40011-017-0889-1
  21. Dietary l-Arginine Supplementation Enhances the Reproductive Performance of Gilts vol.137, pp.3, 2007, https://doi.org/10.1093/jn/137.3.652
  22. Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets1 vol.86, pp.4, 2008, https://doi.org/10.2527/jas.2007-0371
  23. Oral administration of putrescine and proline during the suckling period improves epithelial restitution after early weaning in piglets1 vol.93, pp.4, 2015, https://doi.org/10.2527/jas.2014-8230
  24. Supplemental methionine, choline, or taurine alter in vitro gene network expression of polymorphonuclear leukocytes from neonatal Holstein calves vol.100, pp.4, 2017, https://doi.org/10.3168/jds.2016-12025
  25. The effects of supplemental threonine on performance, carcass characteristics, immune response and gut health of broilers in subtropics during pre-starter and starter period pp.09312439, 2018, https://doi.org/10.1111/jpn.12991
  26. Effect of bamboo vinegar powder as an antibiotic alternative on the digesta bacteria communities of finishing pigs vol.64, pp.10, 2018, https://doi.org/10.1139/cjm-2018-0058
  27. Advances in low-protein diets for swine vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0276-7
  28. Rice protein concentrate partially replaces dried whey in the diet for early-weaned piglets and improves their growth performance vol.88, pp.7, 2008, https://doi.org/10.1002/jsfa.3196
  29. Improving efficiency of sow productivity: nutrition and health vol.4, pp.1, 2013, https://doi.org/10.1186/2049-1891-4-26
  30. The impact of different levels of cysteine on the plasma metabolomics and intestinal microflora of sows from late pregnancy to lactation vol.10, pp.2, 2019, https://doi.org/10.1039/C8FO01838C
  31. Plant Food By-Products as Feed: Characteristics, Possibilities, Environmental Benefits, and Negative Sides pp.1525-6103, 2019, https://doi.org/10.1080/87559129.2019.1573431
  32. Influence of arginine on enzymes related to arginine metabolism in bovine mammary epithelial cells in vitro vol.99, pp.1, 2019, https://doi.org/10.1139/cjas-2017-0215
  33. Amino acids and immune function vol.98, pp.2, 2007, https://doi.org/10.1017/s000711450769936x
  34. Growth performance and metabolic responses in barrows fed low-protein diets supplemented with essential amino acids vol.109, pp.1, 2007, https://doi.org/10.1016/j.livsci.2007.01.104
  35. Bio-fermentation Technology to Improve Efficiency of Swine Nutrition vol.23, pp.6, 2010, https://doi.org/10.5713/ajas.2010.r.02
  36. Dynamic changes in blood flow and oxygen consumption in the portal-drained viscera of growing pigs receiving acute administration of l-arginine vol.43, pp.6, 2007, https://doi.org/10.1007/s00726-012-1328-5
  37. Glutamine modifies immune responses of mice infected with porcine circovirus type 2 vol.110, pp.6, 2013, https://doi.org/10.1017/s0007114512006101
  38. Estimation of dietary threonine requirement for growth and immune responses of broilers vol.41, pp.4, 2013, https://doi.org/10.1080/09712119.2013.795896
  39. Arginine enhances embryo implantation in rats through PI3K/PKB/mTOR/NO signaling pathway during early pregnancy. vol.145, pp.1, 2013, https://doi.org/10.1530/rep-12-0254
  40. Metabolomic analysis of amino acid metabolism in colitic rats supplemented with lactosucrose vol.45, pp.4, 2007, https://doi.org/10.1007/s00726-013-1535-8
  41. Underestimated contribution of skeletal muscle in ornithine metabolism during mouse postnatal development vol.46, pp.1, 2014, https://doi.org/10.1007/s00726-013-1608-8
  42. The role of leucine and its metabolites in protein and energy metabolism vol.48, pp.1, 2007, https://doi.org/10.1007/s00726-015-2067-1
  43. Optimizing Gastrointestinal Integrity in Poultry: The Role of Nutrients and Feed Additives vol.5, pp.None, 2018, https://doi.org/10.3389/fvets.2018.00348
  44. Fetal Huanjiang mini-pigs exhibit differences in nutrient composition according to body weight and gestational period vol.13, pp.7, 2007, https://doi.org/10.1371/journal.pone.0199939
  45. Effects of changing omega-6 to omega-3 fatty acid ratios in corn-soybean meal-based diet on performance, serum lipid profile and colostrum and milk composition of sows and performance of piglets vol.59, pp.7, 2007, https://doi.org/10.1071/an17090
  46. Growth performance and intestinal health of broilers fed a standard or low-protein diet with the addition of a protease vol.48, pp.None, 2007, https://doi.org/10.1590/rbz4820180232
  47. Effects of Dietary L-arginine Supplementation from Conception to Post- Weaning in Piglets vol.20, pp.7, 2007, https://doi.org/10.2174/1389203720666190125104959
  48. Physiological Effects of Dietary Amino Acids on Gut Health and Functions of Swine vol.6, pp.None, 2007, https://doi.org/10.3389/fvets.2019.00169
  49. Effects of dietary methionine supplementation on growth performance, intestinal morphology, antioxidant capacity and immune function in intra‐uterine growth‐retarded suckling piglets vol.103, pp.3, 2019, https://doi.org/10.1111/jpn.13084
  50. The immune-nutrition interplay in aging - facts and controversies vol.5, pp.2, 2007, https://doi.org/10.3233/nha-170034
  51. Inflammation and oxidative stress transcription profiles due to in vitro supply of methionine with or without choline in unstimulated blood polymorphonuclear leukocytes from lactating Holstein cows vol.102, pp.11, 2007, https://doi.org/10.3168/jds.2019-16413
  52. Effects of long-chain fatty acid supplementation on the growth performance of grower and finisher pigs: a meta-analysis vol.10, pp.1, 2007, https://doi.org/10.1186/s40104-019-0374-1
  53. Use of Bacillus subtilis PB6 enriched with choline to improve growth performance, immune status, histological parameters and intestinal microbiota of broiler chickens vol.60, pp.5, 2020, https://doi.org/10.1071/an18737
  54. Differences in Gut Microbial and Serum Biochemical Indices Between Sows With Different Productive Capacities During Perinatal Period vol.10, pp.None, 2007, https://doi.org/10.3389/fmicb.2019.03047
  55. Role of Dietary Amino Acids and Nutrient Sensing System in Pregnancy Associated Disorders vol.11, pp.None, 2007, https://doi.org/10.3389/fphar.2020.586979
  56. Tryptophan promoted β-defensin-2 expressionviathe mTOR pathway and its metabolites: kynurenine banding to aryl hydrocarbon receptor in rat intestine vol.10, pp.6, 2007, https://doi.org/10.1039/c9ra10477a
  57. Dietary supplementation with N-carbamylglycinate (CGly) improved feed source proline absorption and reproductive performance in sows vol.11, pp.4, 2007, https://doi.org/10.1039/c9fo01940e
  58. Effects of dietary energy and lysine levels on physiological responses, reproductive performance, blood profiles, and milk composition in primiparous sows vol.62, pp.3, 2020, https://doi.org/10.5187/jast.2020.62.3.334
  59. Serum metabolomics identifies metabolite panels that differentiate lame dairy cows from healthy ones vol.16, pp.6, 2007, https://doi.org/10.1007/s11306-020-01693-z
  60. Review: Practical Use of n-3 Fatty Acids to Improve Reproduction Parameters in the Context of Modern Sow Nutrition vol.10, pp.7, 2007, https://doi.org/10.3390/ani10071141
  61. Effects of L-Arginine Supplementation during Late Gestation on Reproductive Performance, Piglet Uniformity, Blood Profiles, and Milk Composition in High Prolific Sows vol.10, pp.8, 2020, https://doi.org/10.3390/ani10081313
  62. Effect of light intensity on digestion and immune responses, plasma cortisol and amino acid composition of Scylla paramamosain during indoor overwintering vol.51, pp.12, 2007, https://doi.org/10.1111/are.14836
  63. Understanding intestinal health in nursery pigs and the relevant nutritional strategies vol.34, pp.3, 2021, https://doi.org/10.5713/ab.21.0010
  64. Maternal Supplementation with Cow’s Milk Naturally Enriched with PUFA Alters the Metabolism of Sows and the Fatty Acid Profile of the Offspring vol.13, pp.6, 2007, https://doi.org/10.3390/nu13061942
  65. Isoquinoline Alkaloids in Sows’ Diet Reduce Body Weight Loss during Lactation and Increase IgG in Colostrum vol.11, pp.8, 2007, https://doi.org/10.3390/ani11082195
  66. A Targeted Serum Metabolomics GC-MS Approach Identifies Predictive Blood Biomarkers for Retained Placenta in Holstein Dairy Cows vol.11, pp.9, 2021, https://doi.org/10.3390/metabo11090633
  67. Supplementation with a Natural Source of Amino Acids, Sil-Q1 (Silk Peptide), Enhances Natural Killer Cell Activity: A Redesigned Clinical Trial with a Reduced Supplementation Dose and Minimized Season vol.13, pp.9, 2007, https://doi.org/10.3390/nu13092930
  68. Effects of Bacillus subtilis, butyrate, mannan-oligosaccharide, and naked oat (ß-glucans) on growth performance, serum parameters, and gut health of broiler chickens vol.100, pp.12, 2007, https://doi.org/10.1016/j.psj.2021.101506
  69. Periconceptional nutrition with spineless cactus (Opuntia ficus-indica) improves metabolomic profiles and pregnancy outcomes in sheep vol.11, pp.1, 2007, https://doi.org/10.1038/s41598-021-86653-w
  70. Determination of ideal protein ratios in growing pullets vol.284, pp.None, 2007, https://doi.org/10.1016/j.anifeedsci.2021.115189