Characteristics of Copolymerization of Ethylene/1-Octene with rac-Me2Si(2-p-tolylindenyl)2ZrCl2 Catalyst

rac-Me2Si(2-p-tolylindenyl)2ZrCl2 촉매를 이용한 에틸렌/1-옥텐의 공중합 특성

  • Ahn, Sung-Hyun (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Park, Yeung-Ho (Division of Materials and Chemical Engineering, Hanyang University)
  • 안성현 (한양대학교 재료화학공학부) ;
  • 박융호 (한양대학교 재료화학공학부)
  • Received : 2007.08.09
  • Accepted : 2007.09.05
  • Published : 2007.10.10

Abstract

The copolymerization characteristics of a newly-synthesized catalyst, $rac-Me_2Si(2-p-tolylindenyl)_2ZrCl_2$, and its analogue, $rac-Me_2Si(Ind)_2ZrCl_2$, were examined in the ethylene/1-octene copolymerization while varying the concentration of 1-octene in the reaction mixture. The activity of $rac-Me_2Si(2-p-tolylindenyl)_2ZrCl_2$ catalyst was decreased with increase of comonomer concentration, which is different from the usual comonomer effect of the metallocene catalysts with a bridge structure. The contents of 1-octene in the copolymer from the catalyst with 2-p-tolyl substituent were higher than those from the catalyst without that substituent. The melting point, crystallinity, and molecular weight decreased with comonomer content which was more apparent for $rac-Me_2Si(2-p-tolylindenyl)_2ZrCl_2$ catalyst.

새롭게 합성된 $rac-Me_2Si(2-p-tolylindenyl)_2ZrCl_2$ 촉매와 인디닐 리간드에 치환체가 붙어 있지 않는 상용촉매인 $rac-Me_2Si(Ind)_2ZrCl_2$ 촉매들을 조촉매인 methylaluminoxane (MMAO)를 사용하여 에틸렌/1-옥텐 공중합을 실시하였고, 반응물 내 1-옥텐의 농도를 변화시키며 얻어진 공중합체의 특성을 조사하였다. 촉매활성에 있어서 $rac-Me_2Si(2-p-tolylindenyl)_2ZrCl_2$ 촉매를 이용하여 공중합을 실시한 경우 다리구조를 가진 다른 촉매들과 달리 촉매활성이 감소하여 comonomer의 첨가에 따라 활성이 증가하는 comonomer effect는 발견되지 않았다. $^{13}C$ NMR 분석에서 공중합체에 삽입된 1-옥텐의 양은 촉매 리간드에 붙은 치환체에 의존함을 보였으며, 2-p-tolyl 치환체가 붙은 촉매로 얻어진 공중합체에서 1-옥텐 삽입량이 더 높음을 보였다. DSC, GPC 분석에서 반응물 내 1-옥텐의 농도가 증가함에 따라 공중합체의 녹는점, 결정성, 분자량이 모두 감소하였으며 $rac-Me_2Si(Ind)_2ZrCl_2$ 촉매보다 $rac-Me_2Si(2-p-tolylindenyl)_2ZrCl_2$ 촉매의 경우 녹는점, 결정성 및 분자량의 감소폭이 더 크게 나타났다.

Keywords

References

  1. J. Huang and G. L. Rempel, Prog. Polym. Sci., 20, 459 (1995)
  2. H. H. Brintzinger, D. Fischer, R. Mûlhaupt, B. Rieger, and R. M. Waymouth, Angew. Chem. Int. Ed. Engl., 34, 1143 (1995)
  3. N. Herfert, P. Montag, and G. Fink, Makromol. Chem., 194, 3167 (1993) https://doi.org/10.1002/macp.1993.021940322
  4. J. Koivumaki and J. V. Seppala, Macromolecules, 26, 5535 (1993)
  5. J. Koivumaki and J. V. Seppala, Polymer, 34, 1958 (1993)
  6. R. Quijada, J. Dupont, M. S. L. Miranda, R. B. Scipioni, and G. B. Galland, Macromol. Chem. Phys., 196, 3991 (1995) https://doi.org/10.1002/macp.1995.021960402
  7. S. E. Reybuck, A. Meyer, and R. M. Waymouth, Macromolecules, 35, 637 (2002) https://doi.org/10.1021/ma011517d
  8. M. J. Schneider, J. Suhm, R. Mûlhaupt, M. H. Prosenc, and H. H. Brintzinger, Macromolecules, 30, 3164 (1997)
  9. J. Suhm, M. J. Schneider, and M. Mûlhaupt, J. Mol. Catal. A. Chem., 128, 215 (1998)
  10. S. C. Yoon, J. W. Park, H. S. Jung, H. J. Song, J. T. Park, and S. I. Woo, J. Organomet. Chem., 559, 149 (1998)
  11. S. C. Yoon, T. K. Han, B. W. Woo, H. J. Song, S. I. Woo, and J. T. Park, J. Organomet. Chem., 534, 81 (1997)
  12. J. C. Randall, J. M. S-Rev. Macromol. Chem. Phys. C29, 201 (1989)
  13. M. D. F. V. Marques, A. Conte, F. C. D. Resende, and E. G. Chaves, J. Appl. Polym. Sci., 82, 724 (2001) https://doi.org/10.1002/app.1898
  14. K. Soga, H. Yanagihara, and D. H. Lee, Makromol. Chem., 190, 995 (1989) https://doi.org/10.1002/macp.1989.021900508
  15. C. Przybyla, B. Tesche, and G. Fink, Macromol. Rapid Commun., 20, 328 (1999)
  16. Z. Q. Fan, T. Yasin, and L. X. Feng, J. Polym. Sci. A, 38, 4299 (2000) https://doi.org/10.1002/1099-0518(20001201)38:23<4299::AID-POLA160>3.0.CO;2-M
  17. M. Miri, D. Hetzer, A. Miles, M. Pecak, and B. Riscili, in: W. Kaminsky (Ed.), Metalorganic Catalysts for Synthesis and Polymerisation, Springer-Verlag, Berlin, p. 509 (1999)
  18. I. Kim, S. Y. Kim, and C. S. Choi, Korean Polym. J., 7, 162 (1999)
  19. J. C. W. Chien and T. Nozaki, J. Polym. Sci., Part A:Polym. Chem., 31, 227 (1993)