Enantioselective Phenolic Kinetic Resolution of Epoxides Catalyzed by New Chiral Salen Complexes

새로운 구조의 키랄 살렌 촉매상에서 페놀유도체에 의한 에폭사이드의 광학선택적 개환반응

  • Rahul, B. Kawthekar (The School of Chemical Engineering and Biotechnology, Inha University) ;
  • Lee, Kwang-Yeon (The School of Chemical Engineering and Biotechnology, Inha University) ;
  • Kim, Geon-Joong (The School of Chemical Engineering and Biotechnology, Inha University)
  • Received : 2007.09.19
  • Accepted : 2007.10.16
  • Published : 2007.12.10

Abstract

New chiral Co-salen complexes with one $C_3-^tBu$ group in the structure have been synthesized and applied as a chiral catalyst. A dimeric chiral salen having aluminum group metal salts such as $AlCl_3$ displayed very high catalytic reactivity and enantioselectivity for the asymmetric ring opening of epoxides to synthesize optically pure ${\alpha}$-aryloxy alcohols via phenolic kinetic resolution. The salen complexes immobilized on the inorganic support were also used as effective catalysts in that reaction. The identity of metal salts in the new chiral salen complex has proved to be important in the enantioselective reactions.

구조중에 1개의 tert-부틸기를 가진 새로운 형태의 키랄살렌 착체를 합성하여 비대칭반응 촉매로서 활용하였다. 알루미늄족의 금속염을 소유한 이량체형의 키랄 살렌 촉매는 에폭사이드의 산소고리를 페놀류로 여는 비대칭반응에서 매우 높은 활성과 선택성을 나타내었다. 또한 무기담체에 고정화된 살렌 착체도 이 반응에 대하여 효과적인 촉매로 사용할 수 있었다. 새로운 키랄 살렌촉매 중에 존재하는 금속염의 종류는 광학선택적 반응에서 중요한 영향을 나타내었다.

Keywords

Acknowledgement

Supported by : Inha University

References

  1. J. M. Ready and E. N. Jacobsen, J. Am. Chem. Soc., 121, 6086 (1999)
  2. J. M. Ready and E. N. Jacobsen: J. Am. Chem. Soc., 123, 2687 (2001) https://doi.org/10.1021/ja005867b
  3. M. Shibasaki and N. Yoshikawa, Chem. Rev., 102, 2187 (2002) https://doi.org/10.1021/cr010297z
  4. N. S. Josephsohn, K. W. Kuntz, M. L. Snapper, and A. H. Hoveyda, J. Am. Chem. Soc., 123, 1159 (2001) https://doi.org/10.1021/ja001108h
  5. A. H. Mermerian and G. C. Fu, J. Am. Chem. Soc., 125, 4050 (2003) https://doi.org/10.1021/ja028554k
  6. M. Yang, C. Zhu, F. Yuan, Y. Huang, and Y. Pan, Org. Lett., 7, 1927 (2005) https://doi.org/10.1021/ol0503034
  7. M. Kwon and G.-J. Kim, Catalysis Today, 87, 145 (2003)
  8. G.-J. Kim and J. Shin, Tetrahedron Letters, 40, 6827 (1999)
  9. S. D. Bose: Bioorg. Med. Chem., 13, 627 (2005) https://doi.org/10.1016/j.bmc.2004.10.057
  10. D. E. White and E. N. Jacobson, Tetrahedron: Asymmetry, 14, 3633 (2003) https://doi.org/10.1016/j.tetasy.2003.09.024
  11. R. G. Konsler, J. Karl, and E. N. Jacobsen, J. Am. Chem. Soc., 120, 10780 (1998)
  12. S. Peukert and E. N. Jacobsen, Org. Lett.,; 1, 1245 (1999)
  13. J. M. Ready and E. N. Jacobsen, Angew Chem. Int. Ed., 41, 1374 (2002) https://doi.org/10.1002/1521-3773(20020415)41:8<1374::AID-ANIE1374>3.0.CO;2-8
  14. R. Breinbauer and E. N. Jacobsen, Angew Chem. Int. Ed., 39, 3604 (2000) https://doi.org/10.1002/1521-3773(20001016)39:20<3604::AID-ANIE3604>3.0.CO;2-9
  15. S. S. Thakur, W. Li, S.-J. Kim, and G.-J. Kim, Tetrahedron Lett., 46, 2263 (2005)
  16. S. S. Thakur, W. Li, C.-K. Shin, and G.-J. Kim, Chirality, 18, 37 (2006)
  17. G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, M. Massaccesi, P. Melchiorre, and L. Sambri, Org. Lett., 6, 2173 (2004) https://doi.org/10.1021/ol049372t
  18. G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, P. Melchiorre, and L. Sambri, Org. Lett., 6, 3973 (2004) https://doi.org/10.1021/ol048322l
  19. D. Atwood and M. J. Harvey, Chem. Rev., 101, 37 (2001) https://doi.org/10.1021/cr990008v
  20. D. Atwood and P. Wei, Chem.Commun., 1427 (1997)
  21. E. Solari, F. Corazza, C. Floriani, A. Chiesi-Villa, and C. Guastini, J. Chem. Soc. Dalton Trans., 1345 (1990)
  22. S. J. Gruber, C. M. Harris, and E. Sinn, Inorg. Chem., 2, 268 (1968)
  23. R. H. Holm, W. Everett, and A. Chakravorty, Prog. Inorg. Chem., 7, 83 (1966) https://doi.org/10.1002/9780470166086.ch3
  24. H. Aoi, M. Ishimori, and T. Tsuruta, Bull. Chem. Soc. Jpn., 48, 1897 (1975) https://doi.org/10.1246/bcsj.48.1897