Effect of Hosts on the Aggregation Behavior of Oxazine 720

Oxazine 720의 응집 현상에 미치는 호스트의 영향

  • Kang, Tae-Wook (Department of Nanomaterial Chemistry, College of Science and Technology, Dongguk University) ;
  • Lee, In-Ja (Department of Nanomaterial Chemistry, College of Science and Technology, Dongguk University)
  • 강태욱 (동국대학교 과학기술대학 나노소재화학과) ;
  • 이인자 (동국대학교 과학기술대학 나노소재화학과)
  • Received : 2006.12.21
  • Accepted : 2007.01.05
  • Published : 2007.02.10

Abstract

The effects of the host on the aggregation behavior of Oxaxine 720 (Ox720) were studied using absorption, fluorescence, and excitation spectra. The host materials used in this study were water, ethanol, and $TiO_2/P123$ nanocomposite. Ox720 aqueous solution contains a significant amount of H-aggregates, which increases with the increase in the concentration. In ethanol solution, Ox720 mainly exists in the monomer form and tiny amount of Ox720 exists in H- and J-aggregate forms. In the $TiO_2/P123$ nanocomposite thin film, the amount of H-aggregates was smaller than that in the aqueous solution but greater than that in the ethanol solution. $TiO_2$ nanocomposite thin film was proven to be a moderately good host for Ox720.

Oxazine 720 (Ox720)의 응집체 생성을 에탄올, 물 및 $TiO_2/P123$ 나노 복합체 분위기 하에서 흡수, 형광 및 여기상태 흡수 스펙트럼을 측정하여 연구하였다. 수용액에서 Ox720는 상당량이 H-형 이량체로 존재하며, 농도가 증가할수록 이량체의 양은 증가하였다. 주어진 농도 범위의 에탄올 용액에서는 대부분의 Ox720이 단량체로 존재하지만 미량의 H-형 및 J-형 이량체도 존재하였다. 메조구조를 갖는 $TiO_2/P123$ 나노 복합체 박막은 에탄올 용액과 수용액의 중간 정도에 해당하는 H-형 이량체를 포함하였으며, Ox720 단량체에 대한 비교적 좋은 고체 용매이다.

Keywords

Acknowledgement

Supported by : 동국대학교

References

  1. R. Vogel, M. Harvey, G. Edwards, P. Meredith, N. Heckenberg, M. Trau, and H. Rubinsztein-Dunlop, Macromol., 35, 2063 (2002)
  2. C. Lee, Y. W. Sung, and J. W. Park, J. Phys. Chem. B, 103, 893 (1999) https://doi.org/10.1021/jp9845219
  3. S. Das, K. G. Thomas, K. J. Thomas, V. Madhavan, D. Liu, P. V. Kamt, and M. V. George, J. Phys. Chem. B., 100, 17310 (1996)
  4. E. E. Jelly, Nature, 138, 1009 (1936) https://doi.org/10.1038/1381009a0
  5. G. Scheibe, Angew. Chem., 49, 563 (1936)
  6. K. H. Drexhage, Topics in Applied Physics : Dye Lasers, ed. F. P. Schafer, vol 1, Springer, Berlin (1973)
  7. M. Maeda, Laser Dyes, Academic press, Tokyo (1984)
  8. T. J. Dougherty, J. E. Kaufman, A. Goldfarb, K. R. Weishaupt, D. G. Boyle, and M. Mittelman, Cancer Res., 38, 2628 (1978)
  9. P. Innocenzi, H. Kozuka, and T. Yoko, J. Non-Cryst. Solids, 201, 26 (1996)
  10. F. P. Schafer, Topics in Applied Physics: Dye Lasers, vol. 1, Springer, Berlin (1973)
  11. F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmelka, and G. D. Stucky. Adv. Mater., 22, 632 (1999)
  12. G. Wirnsberger and G. D. Stucky, Chem. Mater., 12, 2525 (2000) https://doi.org/10.1021/cm001078h
  13. R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, Spectrochim. Acta A, 60, 245 (2004)
  14. H. Yun, K. Miyazawa, H. Zhou, I. Honma, and M. Kuwabara, Adv. Mater., 13, 1377 (2001) https://doi.org/10.1002/1521-4095(200109)13:18<1377::AID-ADMA1377>3.0.CO;2-T
  15. M. Kasha, Radiat. Res., 20, 55 (1963)
  16. V. I. Yuzhakov, Russ. Chem. Rev., 48, 1076 (1979)