Effect of Addition of Tween 20 and Glycerol in Recombinant Escherichia Coli Culture on Organophosphorus Hydrolase (OPH) Production for Biodrgradation of Coumaphos Insecticide

Coumaphos 살충제의 생분해를 위하여 재조합 대장균 배양에서 Tween 20과 Glycerol 첨가가 유기인분해 효소 생산에 미치는 영향

  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Seo, Sang Hwan (Department of Biological and Environmental Engineering, Semyung University)
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 서상환 (세명대학교 바이오환경공학과)
  • Received : 2007.07.24
  • Accepted : 2007.08.22
  • Published : 2007.10.10

Abstract

Organophosphorus hydrolase (OPH) expressed from recombinant Escherichia coli was used to biodegrade organophosphate insecticide coumaphos which has a very high toxicity in mammalian cells. To improve the productivity of OPH, the effects of nonionic surfactants (Tween 20, PEG 1000) and organic solvents, such as glycerol, propanol, and ethanol, were investigated in the strain culture. The maximum OPH was produced when the 0.25% of Tween 20 and 0.5% of glycerol were added to the medium. As the OPH obtained from disrupt-cell process by ultrasound treatment was used, the biodegradation efficiencies of 0.2, 0.5, 1.0 and 2.0 mM coumaphos were 100, 88, 84 and 78%, respectively. A novel method developed in this study could be applied to the biodetoxification technology in the contaminated region with various coumaphos concentration.

본 연구에서는 동물세포에서 매우 높은 독성을 갖는 유기인 살충제 coumaphos를 생분해하기 위하여, 재조합 대장균으로부터 발현된 organophosphorus hydrolase (OPH)가 사용되었다. OPH 생산성을 향상시키고자, 균주의 배지에 비이온성계면활성제(Tween 20, PEG 1000)와 유기용매(glycerol, propanol, ethanol)에 대한 효과를 고찰하였다. 0.25% Tween 20과 0.5% glycerol를 배지에 첨가하였을 때, 최대의 OPH가 생산되었다. 초음파를 이용한 균주 파쇄 공정으로부터 생성된 OPH를 사용 하였을 때, 0.2, 0.5, 1.0, 2.0 mM coumaphos는 각각 100, 88, 84, 78%의 생분해효율을 나타내었다. 이 연구에서 얻어진 결과들은 coumaphos가 다양한 농도로 오염된 지역을 생물학적으로 처리할 수 있는 새로운 방법으로서 활용될 수 있을 것이다.

Keywords

Acknowledgement

Supported by : 세명대학교

References

  1. B. K. Singh and A. Walker, FEMS Microbiol. Rev., 30, 428 (2006) https://doi.org/10.1111/j.1574-6976.2006.00018.x
  2. P. C. Kearney, J. S. Karns, M. T. Muldoon, and J. M. Ruth, J. Agric. Food Chem. 34, 702 (1986) https://doi.org/10.1021/jf00070a028
  3. A. H. Mansee, W. Chen, and A. Mulchandani, Biotechnol. Biopro. Eng., 5, 436 (2000) https://doi.org/10.1007/BF02931944
  4. A. H. Mansee, W. Chen, and A. Mulchandani, J. Ind. Microbiol. Biotechnol. 32, 554 (2005)
  5. J. K. Grimsley, J. M. Scholtz, C. N. Pace, and J. R. Wild, Biochem., 36, 14366 (1997)
  6. G. Fu, Z. Cui, T. Huang, and S. Li, Protein expression and Purification, 36, 170 (2004) https://doi.org/10.1016/j.pep.2004.04.019
  7. W. W. Mulbry and J. S. Karns, J. Bacteriol., 171, 6740 (1989) https://doi.org/10.1128/jb.171.12.6740-6746.1989
  8. R. D. Richins, A. Mulchandani, and W. Chen, Biotechnol. and Bioeng., 69, 591 (2005) https://doi.org/10.1002/1097-0290(20000920)69:6<591::AID-BIT2>3.0.CO;2-X
  9. C. M. Serdar and D. T. Gibson, Bio/Tecnlol. 3, 567 (1985) https://doi.org/10.1038/nbt0685-567
  10. D. G. Kang, S. S. Choi, and H. J. Cha, Biotechnol., Progress, 22, 406 (2006) https://doi.org/10.1021/bp050356k
  11. W. W. Mulbry and J. S. Karns, J. Bacteriol., 171, 6740 (1989) https://doi.org/10.1128/jb.171.12.6740-6746.1989
  12. E. Rainina, E. Efremenco, S. Varfolomeyev, A. L. Simonian, and J. Wild, Biosens. Bioelectron. 11, 991 (1996)
  13. D. P. Dumas, S. R. Caldwell, J. R. Wild, and F. M. Raushel, J. Biological Chem., 264, 19659 (1989)
  14. S. R. Caldwell and F. M. Raushel, Biotechnol. and Bioeng., 37, 103 (1991) https://doi.org/10.1002/bit.260370203
  15. H. J. Cha and Y. J. Yoo, Kor. J. Appl. Microbiol. Biotechnol., 24, 712 (1996)
  16. M. Y. Kim, J. S. Kown, and E. K. Lee, Kor. J. Biotechnol. Bioeng. 20, 338 (2005)