DOI QR코드

DOI QR Code

역상 고성능 액체 크로마토그래피를 이용한 마늘에서 diallyl disulfide의 분석

Determination of diallyl disulfide in garlic by reversed-phase high performance liquid chromatography

  • 만효룡 (초정밀생물분리기술연구센터, 화공과, 인하대학교) ;
  • ;
  • 노경호 (초정밀생물분리기술연구센터, 화공과, 인하대학교)
  • Wan, Xiaolong (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng., Inha University) ;
  • Polyakova, Yulia (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng., Inha University) ;
  • Row, Kyung Ho (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng., Inha University)
  • 투고 : 2007.07.16
  • 심사 : 2007.08.28
  • 발행 : 2007.10.25

초록

마늘(Allium sativum L.)의 특성은 organosulfur 화합물이다. 마늘에 포함된 diallyl disulfide(DADS)를 분석하기 위한, 간단하고 신속한 시료준비와 분석방법을 제시하였다. 모든 마늘시료들은 메탄올, 벤젠, 또는 테트라하이드로퓨란과 같은 용매로 추출하여 분석하였다. 실험결과에 의하면, 메탄올로 추출한 시료가 가장 우수하였다. 분석조건으로는 이동상은 메탄올과 물로 구성되고 기울기법을 적용하였다. 분말가루로 된 마늘 1 g에 0.61 mg DADS를 추출하였다. 기존 분석방법에 비해 우수하여 마늘관련 연구에 도움이 될 것이다.

The properties of garlic (Allium sativum L.) are attributed to organosulfur compounds. In this paper, an analytical technique with a rapid and simple sample preparation procedures for determination of diallyl disulfide (DADS) in garlic was reported. The DADS was simply extracted with various solvents (methanol, benzene or tetrahydrofuran) from garlic and prepared for HPLC analysis. From the results, the methanol was select as an optimal extraction solvent. The mobile phase was composed from methanol and water, and the gradient elution mode was applied. 0.61 mg of DADS per g garlic powder can be extracted with methanol. This work offers some advantages over the currently accepted techniques and would be useful for chemical and biological studies of garlic and its products.

키워드

참고문헌

  1. K. Rahman, Ageing Res. ReV., 2, 39-56 (2003) https://doi.org/10.1016/S1568-1637(02)00049-1
  2. C. Ip, D. J. Lisk and G. S. Stoewsand, Nutr Cancer, 17, 279-286 (1992) https://doi.org/10.1080/01635589209514197
  3. B. S. Reddy, C. V. Rao, A. Rivenson and G. Kelloff, Cancer Res., 53, 3493-3498 (1993)
  4. E. Block, Sci. Am., 252, 94-99 (1985).
  5. E. Block, Angew Chem. Int. Ed. Eng., 31, 1135-1178 (1992) https://doi.org/10.1002/anie.199211351
  6. Y. Ueda, H. Kawajiri, N. Miyamura and R. Miyajima, Nippon Shokuhin Kogyo Gakkaishi, 38, 429-434 (1991) https://doi.org/10.3136/nskkk1962.38.429
  7. H. Matsuura, M. Inagaki, K. Maeshige, N. Ide, Y. Kajimura and Y. Itakura, Planta Med., 62, 70-71 (1996) https://doi.org/10.1055/s-2006-957805
  8. L. D. Lawson, Z. J. Wang and B. G. Hughes, J. Nat. Prod., 54, 436-444 (1991) https://doi.org/10.1021/np50074a014
  9. S. J. Ziegler and O. Sticher, Planta Med., 55, 372-378 (1989) https://doi.org/10.1055/s-2006-962031
  10. M. M. Eckner, O. Sticher and B. Meier, J. Chromatogr., 625, 183-190 (1992) https://doi.org/10.1016/0021-9673(92)85201-4
  11. J. Imai, N. Ide, S. Nagae, T. Moriguchi, H. Mastuura, and Y. Itakura, Planta Med., 60, 417-420 (1994) https://doi.org/10.1055/s-2006-959522
  12. I. Krest, J. Glodek and M. Keusgen, J. Agric. Food Chem., 48, 3753-3760 (2000) https://doi.org/10.1021/jf990521+
  13. K. S. Yoo and L. M. Pike, Sci. Hortic., 72, 1-10 (1998) https://doi.org/10.1016/S0304-4238(97)00111-8
  14. D. J. Thomas and K. L. Parkin, J. Agric. Food Chem., 42, 1632-1638 (1994) https://doi.org/10.1021/jf00044a010
  15. Y. Ueda, M. Sakaguchi, K. Hirayama, R. Miyajima and A. Kimizuka, Agric. Biol. Chem. 54, 163-169 (1990) https://doi.org/10.1271/bbb1961.54.163
  16. I. Arnault, J. P. Christides, N. Mandon, T. Haffner, R. Kahane and J. Auger, J. Chromatogr. A, 991, 69-75 (2003) https://doi.org/10.1016/S0021-9673(03)00214-0
  17. L. D. Lawson and C. D. Gardner, J. Agric. Food Chem., 53, 6254-6261 (2005) https://doi.org/10.1021/jf050536+
  18. I. Arnault, T. Haffner, M. H. Siess, A. Vollmar, R. Kahane and J. Auger, J. Pharm. Biomed. Anal., 37, 963-970 (2005) https://doi.org/10.1016/j.jpba.2004.09.032
  19. R. Kubec, M. Svobodova and J. Velisek, J. Chromatogr. A, 862, 85-94 (1999) https://doi.org/10.1016/S0021-9673(99)00902-4
  20. J. E. Lancaster and K. E. Kelly, J. Sci. Food Agric., 34, 1229-1235 (1983) https://doi.org/10.1002/jsfa.2740341111
  21. M. Keusgen, M. Junger, I. Krest and M. Schoning, J. Biosens. Bioelectron. 18, 805-812 (2003) https://doi.org/10.1016/S0956-5663(03)00045-9
  22. R. L. M. Synge and J. C. Wood, Biochem. J. 64, 252-259 (1956) https://doi.org/10.1042/bj0640252
  23. M. Ichikawa, N. Ide, J. Yoshida, H. Yamaguchi and K. ONO, J. Agric. Food Chem. 54, 1535-1540 (2006) https://doi.org/10.1021/jf051742k