Low Temperature Preparation of Transparent Glass-Ceramic Using Metal-Alkoxides (1) Synthesis and Properties of Porous Monolithic Gel in Li2O·1.7Al2O3·8.6SiO2

금속 알콕시드를 이용한 투명 결정화유리의 저온 합성 (1) Li2O·1.7Al2O3·8.6SiO2 다공성 겔체의 합성

  • Chun, Kyung-Soo (Department of Chemistry, Kyungwon University) ;
  • Tak, Joong-Jae (Department of Interior Ceramic Design, Yeo Joo Institute of Technology)
  • 전경수 (경원대학교 화학과) ;
  • 탁중재 (여주대학 인테리어 세라믹 디자인학과)
  • Received : 2007.06.20
  • Accepted : 2007.09.11
  • Published : 2007.12.10

Abstract

Crack-free dried gel monoliths of the composition $Li_2O1{\cdot}7Al_2O_3{\cdot}8.6SiO_2$ have been prepared as a precursor of transparent glass-ceramic by the hydrolysis and polycondensation of mixed metal alkoxides in solutions containing N,N-dimethylformamide as the drying control chemical additive, alcohols, and water. It was investigated that activation energy for gelation according to the variation of water concentration ranged from 13 to 14 kcal/mol. Only when the amount of water for gelation was 3 times higher than the stoichiometric amount, monolithic dry gels were successfully prepared after drying at $70{\sim}75^{\circ}C$ and at a rate of 0.1~0.3%/h. The specific surface area, the pore volume, the average pore diameters of dried gel at $180^{\circ}C$ were about $239.40m^2/g$, 0.001~0.03 mL/g, and $145.62{\AA}$, respectively. It showed that the dried monolithic gel had a porous body. The DTA curve had the first exothermic peak around $800^{\circ}C$ and the 2nd peak around $980^{\circ}C$, which may correspond to crystallization of the gel.

투명결정화 유리의 전구체로서 균열이 없는 $Li_2O1{\cdot}7Al_2O_3{\cdot}8.6SiO_2$ 조성인 다공성 괴상 겔을 formamide를 첨가한 알콕시드 용액으로부터 sol-gel방법으로 합성하였다. 겔 합성에서 겔화 활성화 에너지, 비표면적, 습윤겔의 완전 탈수에 필요한 온도, 기공의 부피 및 기공크기와 분포를 측정하였고, 겔의 결정화온도를 검토하고자 시차열분석을 실시하였다. 겔화의 활성화에너지는 가수분해에 필요한 물의 첨가량에 따라 13~14 kcal/mol 범위를 나타내고, 물의 첨가량이 가수분해시 필요한 이론량의 3배 이상일 경우, $70{\sim}75^{\circ}C$, 건조속도 0.1~0.3 %/h에서는 겔의 균열을 방지할 수 있어 안정한 괴상 겔을 제조할 수 있었다. $180^{\circ}C$에서 건조한 겔체는 비표면적, 기공부피 및 기공크기분포는 $239.40m^2/g$, 0.001~0.03 mL/g 그리고 1~122 nm 반지름의 미세구조로 된 투명 겔체로서 다공질 물질임이 확인되었고, 건조겔의 시차열분석 결과 $800^{\circ}C$ 부근에서 1차 발열피크, $980^{\circ}C$ 부근에서가 2차 발열피크가 확인되어 결정화가 일어남을 알 수 있었다.

Keywords

References

  1. G. H. Beall and D. A. Duke, J. Mat. Sci., 4, 340 (1969) https://doi.org/10.1007/BF00550404
  2. A. Buch, M. Ish-shalom, R. Reisfeld, and A. Kisilev, Mat. Sci. & Eng., 71, 383 (1985)
  3. Y. W. Park and H. J. Kim, J. Kor. Cer. Soc., 28, 406 (1991)
  4. H. G. Kim, T. Komatsu, K. Shioya, K. Matusita, K. Tanaka, and K. Hirao, Transparent Tellurite-Based Glass-Ceramics with Second Harmonic Generation, Forum on Glass Science and Technology, Korea, 8 (1997)
  5. S. Sakka, H. Kozuka, and G. Zhao, Sol-Gel Preparation of Metal Particle/Oxide Nanocomposites, Sol-Gel Optics, spie Vol. 108, 111 (1994)
  6. Glass Handbook, 作花濟夫, 境野照雄, 高橋克明, 213 (1975)
  7. P. Innocenzi, H. Kozuka, and S. Sakka, J. Sol-Gel Sci. Techn., 1305 (1994)
  8. S. Sakka, H. Kozuka, and G. Zhao, Sol-Gel Preparation of Ceramic and Composition Thin Films: Future Prospects and Problems, Forum on Glass Science and Technology, Korea, 94 (1997)
  9. L. Spanhel, M. Mennig, and H. Schubert, Sol-Gel Synthesis of Metal Nanocomposites, Mat. Res.Soc. Symp. Proc., 272, 133 (1992)
  10. J. M. Fernander Navarro and M. A. Villegas, Preparation of Gold Ruby Glasses by the Sol-Gel Method, Glastech. Ber., 65, 32 (1992)
  11. S. D. Stooky, British patent 752243 (1954)
  12. 和田正道, 結晶化 glassの 建材への 應用, 第15回 New Ceramics Seminar (New Ceramics 技術開發の 新たな 指針の 探る), 53 (1988)
  13. 機能性 Glasses, 堂山昌男, 山本良一, 164, 東京大學出版會 (1985)
  14. J. S. Yang and S. Sakka, J. Kor. Cer. Soc., 25, 541 (1988)
  15. J. S. Yang and S. Sakka, Mat. Sci., 25, 1773 (1990) https://doi.org/10.1007/BF01045383
  16. J. S. Yang and S. Sakka, Mat. Sci., 26, 1827 (1991) https://doi.org/10.1007/BF00543610
  17. J. S. Yang and B. G. Kim, Kor. J. Mat. Res., 3, 207 (1993)
  18. J. S. Yang and H. S. Cho, J. Kor. Cer. Soc., 30, 535 (1993)
  19. J. S. Yang and H. S. Cho, J. Kor. Cer. Soc., 32, 507 (1995)
  20. C. H. Kweon, Ph.D. dissertation, Kyunghee Univ., Seoul, Korea (1992)
  21. J. S. Yang, J. Mat. Sci and Tech., 11, 145 (1998)
  22. B. E. Yoldas and D. P Partlow, J. Mat. Sci., 23, 1895 (1988) https://doi.org/10.1007/BF01115736
  23. J. S. Yang, Y. T. Lee, and Y. W. Choi, J. Kor. Cer. Soc., 34, 611 (1997)
  24. M. W. Colby, A. Osaka, and J. D. Mackenzie, J. Non-Cryst. Solids, 99, 129 (1988)
  25. S. Brunauer, P. H. Emmett, and E. Teller, J. Amer. Chem. Soc., 60, 309 (1938) https://doi.org/10.1021/ja01269a023
  26. Powder Surface Area and Porosity, S. Lowell, and J. E. Shields, 2nd ed., 54, Chapma and Hall, London (1984)
  27. 'ゾルーゲル 法の 科學,' 作花濟夫, 162, 承風社, 東京 (1988)
  28. M. W. Bechtold, R. D. Vest, and L. Plambec, J. Amer. Chem. Soc., 90, 4590 (1968) https://doi.org/10.1021/ja01019a015
  29. S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, J. Amer. Chem. Soc., 62, 1723 (1940) https://doi.org/10.1021/ja01864a025
  30. C. J. Brinker and G. W. Scherer, Sol-Gel Science, 521, Academic Press, New York (1990)
  31. S. J. Gregg and K. S. W. Sing, Adsorption Surface Area and Porosity, 2nd ed., 111, Academic Press, London (1982)
  32. T. Kawaguchi, H. Hishikura, J. Iura, and Y. Kokubo, J. Non-Cryst. Solids, 63, 61(1984)
  33. D. M. Krol and J. G. Vanlierop. J. Non-Cryst. Solids, 63, 131 (1984)
  34. M. Prassas, J. Phalippou, and L. L. Hench, J. Non-Cryst. Solids, 63, 375 (1984)