The Feasibility of the DKUH-75 Left Ventricular Assist Device for Acute Cardiogenic Shock in Pigs

돼지의 급성 심인성 쇼크 모델에서 DKUH-75 좌심실보조키의 유용성에 관한 연구

  • Park, Seong-Sik (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Dankook University)
  • 박성식 (단국대학교 의과대학 흉부외과학교실)
  • Published : 2007.03.05

Abstract

Background: The recent trend of an increasing number of patients with acute cardiogenic shock or chronic congestive heart failure following myocardial infarction, as well as the considerable number who can not be weaned from cardiopulmonary bypass after open heart surgery, call for immediate efforts to develop affordable ventricular assist devices that are suitable for the Korean physique. Recently, a pneumatic pulsatile ventricular assist device (VAD), named DKUH-75, has been developed by the Department of Biomedical Engineering, in collaboration with the Department of Thoracic and Cardiovascular Surgery of Dankook University College of Medicine. The feasibility of the DKUH-75 VAD was evaluated on the bases of common hemodynamic variables and echocardiographic measurements in pigs, which are subjected to an acute cardiogenic shock state following myocardial infarction, using a novel coronary artery ligation method employing the ischemic preconditioning concept. Material and Method: Acute cardiogenic shock was induced in 10 Yorkshire Landrace Duroc strain pigs by ligating the left anterior descending coronary artery via an ischemic preconditioning process. The hemodynamic variables were monitored, with epicardial echocardiographic measurements performed before and one hour after the ligation. The DKUH-75 VAD was implanted into 5 pigs one hour after the onset of the shock. The hemodynamic variables and echocardiographic measurements were taken one hour after installation of the VAD. Result: The systolic, diastolic and mean systemic arterial pressures were significantly decreased in all the experimental animals one hour after the ligation. The systolic, diastolic and mean pulmonary arterial pressures were increased (Eds note: this completely contradicts the preceding statement? However, if you mean the non-experimental animals this should be stated?). The left ventricular end diastolic pressure (LVEDP) was increased, but the cardiac index decreased, An increase in the left ventricular end systolic dimension and decreases in the fractional shortening and ejection fraction were observed all animals one hour after the coronary artery ligation. In all 5 of the VAD implanted pigs, the systolic and mean systemic arterial pressures were increased, and the pulmonary arterial pressures decreased one hour after the implantation; the LVEDP decreased, but the cardiac index was significantly increased, In the echocardiographic measurements, the left ventricular end systolic dimension decreased after the implantation of the VAD, but the fractional shortening and ejection fraction significantly increased. Conclusion: Significant improvements in the hemodynamic variables and echocardiographic measurements were observed in the 5 VAD implanted animals one hour after installation, which had been subjected to an acute cardiogenic shock state by ligation of the coronary artery, indicating that the DKUH-75 VAD could help in the recovery of the myocardial function. This suggests that the DKUH-75 VAD is feasible in the short term in relation to an acute cardiogenic shock state due to myocardial infarction.

배경: 최근 관상동맥 질환의 증가로 심근경색으로 인하여 약물에 반응하지 않는 급성 심인성 쇼크 및 만성 울혈성 심부전 환자가 증가하는 추세에 있으며, 개심술 후 여러 가지 원인으로 인공심폐기로부터의 이탈이 불가능한 경우도 상당수에 이르고 있어서 이에 적절히 대처할 수 있는 한국인의 체형에 맞고 경제적인 심실보조기의 개발이 필요하다. 이에 저자는 돼지에서 허혈성 전처치의 개념을 이용하여 관상동맥 결찰을 통한 급성 심인성 쇼크 상태를 유발시키고, 여기에 단국대학교 의과대학 의공학교실과 흉부외과학교실에서 공동으로 개발한 DKUH-75 공압식 박동형 심실보조기를 구동시켜, 실제 생명을 위협하는 심한 심근경색 상태와 유사한 환경에서 심실보조기 구동이 실험동물의 혈역학적 수치 및, 심초음파도 상 심기능 수치 등 급성 심인성 쇼크 상태에서 악화되는 지표들을 호전 시킬 수 있는지를 확인하여 DKUH-75 좌심실보조기의 유용성에 대하여 평가 하고자 하였다. 대상 및 방법: 10마리의 몸무게 50 kg 전후의 잡종돼지를 사용하여 허혈성 전처치의 개념을 이용한 관상동맥 좌전하행지 결찰을 통해 급성 심인성 쇼크 상태를 유발하고, 이들 중 5마리의 실험동물에 DKUH-75 좌심실 보조기를 장착하였다. 10마리의 실험동물 모두에서 관상동맥 결찰 전, 결찰 후 1시간에 혈역학적 수치와 심초음파도상 심기능 수치를 측정하였고 심실보조기를 장착한 5마리의 실험동물에서는 심실보조기 구동 후 1시간에 동일한 수치들을 추가 측정하였다. 결과: 관상동맥 결찰을 통하여 급성 심인성 쇼크를 유발한 10마리의 실험동물에서 관상동맥 결찰 전, 결찰 후 1시간의 혈역학적 측정결과 체동맥압(수축기, 이완기, 평균)은 결찰 후 통계적으로 유의하게 하강하였다. 페동맥압도 수축기, 이완기, 평균 모두 상승하였고 좌심실 이완기 말기압도 결찰 후 상승하였으며, 심박출 지수는 유의하게 감소하였다. 또한 심외막 심초음파도로 측정한 좌심실 수축기말 내경도 결찰 후 유의하게 증가하였으며 분획단축 및 좌심실구혈률은 감소하였다. 심실보조기를 장착한 5마리의 실험동물에서 관상동맥 결찰 1시간 후와 심실보조기 작동 1시간 후의 혈역학적 측정치를 비교하였을 때 수축기 체동맥압과 평균 체동맥압이 유의하게 상승하였으며 폐동맥압은 수축기, 이완기, 평균 모두에서 하강하였고 좌심실 이완기 말기압도 심실보조기 구동 후 유의하게 하강하였다. 심박출 지수는 심실보조기 구동 후 통계적으로 의미 있게 증가하였다. 또한 심외막 심초음파도로 측정한 좌심실 수축기말 내경은 심실보조기 구동 후 유의하게 감소하였으며 분획단축 및 좌심실구혈률은 통계적으로 의미 있게 증가하였다. 결론: DKUH-75 심실보조기는 관상동맥 결찰을 통한 심근경색으로 유발시킨 급성 심인성 쇼크 상태의 실험동물에 장착하여 단기간 구동한 결과 각종 혈역학 수치 및 심초음파도 상 심기능 수치를 개선시키고 이를 통하여 심근 기능 회복에 기여할 것으로 사료되었다. 이는 광범위한 심근경색으로 인한 급성 심인성 쇼크 상태에서 DKUH-75 심실보조기의 단기적 유용성을 의미하는 것이라 하겠다.

Keywords

References

  1. Won TH, Min BG, Kim WG. Application of the total artificial heart as an implantable biventricular assist device by left thoracotomy in an ovine model. Korean J Thorac Cardiovasc Surg 2001;34:296-304
  2. McBride LR, Naunheim KS, Fiore AC, Moroney DA, Swartz MT. Clinical experience with 111 Thoratec ventricular assist devices. Ann Thorac Surg 1999;67:1233-8 https://doi.org/10.1016/S0003-4975(99)00246-5
  3. Frazier OH, Myers TJ, Radovancevic B. The Heartmate left ventricular assist system. Overview and 12-year experience. Tex Heart J 1998;25:265-71
  4. Park SS, Kim SH, Seo PW, et al. Animal experiment of the pneumatic ventricular assist device. Korean J Thorac Cardiovasc Surg 1999;32:1065-77
  5. Weaver ME, Pantely GA, Bustow JD, Ladley HD. A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man. Cardiovasc Res 1986;20:907-17 https://doi.org/10.1093/cvr/20.12.907
  6. Curtis JJ, Boley TM, Walls JT, et al. Frequency of seal disruption with the sarns centrifugal pump in postcardiotomy circulatory assist. Artif Organs 1994;18:235-7 https://doi.org/10.1111/j.1525-1594.1994.tb02183.x
  7. Guyton RA, Schonberger JP, Everts PA, et al. Postcardiotomy shock: clinical evaluation of the BVS 5000 Biventricular Support System. Ann Thorac Surg 1993;56:346-56 https://doi.org/10.1016/0003-4975(93)91174-L
  8. Helman DN, Maybaum SW, Morales DL, et al. Left ventricular assist device bridge-to-transplant network improves survival after failed cardiotomy. Ann Thorac Surg 1999; 68:1187-94 https://doi.org/10.1016/S0003-4975(99)00911-X
  9. Hetzer R, Loebe M, Potapov EV, et al. Circulatory support with pneumatic paracorporeal ventricular assist device in infants and children. Ann Thorac Surg 1998;66:1498-506 https://doi.org/10.1016/S0003-4975(98)00914-X
  10. Loebe M, Hennig E, Muller J, et al. Long-term mechanical circulatory support as a bridge to transplantation, for recovery from cardiomyopathy, and for permanent replacement. Eur J Cardiothorac Surg 1997;11(suppl):S18-24 https://doi.org/10.1016/S1010-7940(97)01185-8
  11. Konertz W, Hotz H, Schneider M, Redlin M, Reul H. Clinical experience with the MEDOS HIA-VAD system in infants and children: a preliminary report. Ann Thorac Surg 1997;63:1138-44 https://doi.org/10.1016/S0003-4975(97)00063-5
  12. Smith HJ, Nuttall A. Experimental models of heart failure. Cardiovasc Res 1985;19:181-6 https://doi.org/10.1093/cvr/19.4.181
  13. Maxwell MP, Hearse DJ, Yellon DM. Species variation in the coronary collateral circulation during regional myocardial ischemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 1987;21: 737-46 https://doi.org/10.1093/cvr/21.10.737
  14. Zhang J, Wilke N, Wang Y, et al. Functional and bioenergetic consequences of postinfarction left ventricular remodeling in a new porcine model: MRI and 31P-MRS study. Circulation 1996;94:1089-100 https://doi.org/10.1161/01.CIR.94.5.1089
  15. van Kats JP, Duncker DJ, Haitsma DB, et al. Angiotensinconverting enzyme inhibition and angiotensin II type I receptor blockade prevent cardiac remodeling in pigs after myocardial infarction: role of tissue angiotensin II. Circulation 2000;102:1556-63 https://doi.org/10.1161/01.CIR.102.13.1556
  16. Reffelmann T, Sensebat O, Birnbaum Y, et al. A novel minimal-invasive model of chronic myocardial infarction in swine. Coron Artery Dis 2004;15:7-12 https://doi.org/10.1097/00019501-200402000-00002
  17. Millner RWJ, Mann JM, Pearson I, Pepper JR. Experimental model of left ventricular failure. Ann Thorac Surg 1991;52: 78-83 https://doi.org/10.1016/0003-4975(91)91424-T
  18. Na CY, Hong JS, Park JJ, Kim WK, Kang MC, Seo JW. Establishment of the heart failure model by coronary artery ligation in sheep. Korean J Thorac Cardiovasc Surg 2002;35: 1-10
  19. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-36 https://doi.org/10.1161/01.CIR.74.5.1124
  20. Przyklenk K, Kloner RA. Preconditioning: a balanced perspective. Br Heart J 1995;74:575-7 https://doi.org/10.1136/hrt.74.6.575
  21. Satava RM Jr, McGoon DC. A model for cardiogenic shock by coronary artery microembolization in calves. Surgery 1974;76:454-60
  22. Sezai A, Shiono M, Orime Y, et al. Renal circulation and cellular metabolism during left ventricular assisted circulation: comparison study of pulsatile and nonpulsatile assists. Artif Organs 1997;21:830-5 https://doi.org/10.1111/j.1525-1594.1997.tb03752.x
  23. Markovitz LJ, Savage EB, Ratcliffe MB, et al. Large animal model of left ventricular aneurysm. Ann Thorac Surg 1989; 48:838-45 https://doi.org/10.1016/0003-4975(89)90682-6