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Abstract

Jacket matrices which are defined to be nxn matrices A=(ax) over a field F with the property AA" =nl, where A"
is the transpose matrix of elements inverse of A,i.e., A" =(aj), was introduced by Lee in 1984 and are used for
signal processing and coding theory, which generalized the Hadamard matrices and Center Weighted Hadamard
matrices. In this paper, some properties and constructions of Jacket matrices are extensively investigated and small
orders of Jacket matrices are characterized, also present the full rate and the 1/2 code rate complex orthogonal space

time code with full diversity.
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[ . Introduction

Sylvester in his paperm introduced self-reciprocal
matrices, which are defined as a square array of ele-
ments of which each is proportional to its first minor.
This wide of class matrices includes these with ortho-
gonal rows and columns. In 1983, Hadamard® showed
that such matrices attained the largest value of the
determinant among all matrices with elements bounded
by unity. Since the publication of this paper, the ma-
trices whose entries equal to +1 and mutually orthogonal
rows and columns have been called Hadamard matrices.

Investigations of Hadamard matrices were connected
with liner algebra problem, such as finding maximum of
determinant. Later on the applications of Hadamard
matrices are connected with information transfer by non-
line electromagnetic waves, with automation training
and coding theory.

Real Hadamard matrices have been generalized in va-
rious ways. Onehand, Turynm investigate the class of
matrices with entries %1, :i:i(i2=— 1) and pairwise ortho-
gonal rows and columns, which are now called Turyn-
type Hadamard matrices. On the other hand, Butson in
[4] considered a more general class of Hadamard ma-
trices. A Butson-type Hadamard matrix is a nxn square
matrix with all its rows and columns mutually ortho-
gonal and with all its elements are powers of g-th root
of unity, denoted by H(g, n). Thus H(2, n) represents
real Hadamard matrices, while H(4, n) represents
Turyn-type Hadamard matrices. In 1996, while studying
orthogonal maximal abelian *-subalgebras of the nxn

matrices, Haagerup in [5] introduced complex Hadamard
matrices which are mutually orthogonal rows and co-
lumns and modular of their entries equal to 1. Complex
Hadamard matrices are closely related to various ma-
thematical and theoretical physical problems, such as
construction of some *-subalgebras in finite von Neu-
mann algebras, constructing error correcting codes and
spin model. Moreover, Lee in [6] proposed the idea of
center weighted Hadamard matrices and center weighted
Hadamard transform. Further, Lee in [7] proposed the
following new class of matrices: Jacket matrices which
generalize real Hadamard matrices, Turyn-type Hada-
mard matrices, Butson-type Hadamard matrices, com-
plex Hadamard matrices and center weighted Hadamard
matrices.

It is well known that the Walsh-Hadamard transform
based on Hadamard matrix is widely used in signal pro-
cessing, in particular image coding and error-control
coding {8]~[12]. Rajan and Lee in [13] obtained a
characterization of quasi-cyclic dyadic codes in the
Walsh-Hadamard transform. Further, many kinds of
transforms based on various generalizations of Hada-
mard matrices have been proposed and investigated
[9]~[12]. Lee in [6] and Lee and Lee'" introduced
center weighted Hadamard transform. Similarly, Lee,
Rajan and Park in [15] and Lee and Lee in [14], [16]
proposed the Jacket transform and reverse Jacket
transform The further investigations of these Jacket
transform and relative problems may be referred to [17]
~[21}.

The Hadamard transform and its generalizations in
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various ways have been proposed and used for audio
and video coding since these transforms are highly
practical value for representing the signal and imagesm.
Due to the ease and efficiency of these transforms that
are widely used for signal and image representations and
compression. The most advantage of these transforms is
lied to their inverse transforms that are easily obtained.
In order to offer quality of representations over the
central region of the image and to retain the simplicity
of Hadamard transform, the center weighted transform
was proposed and studied. With the rapid development
of communication systems that require more transmi-
ssion and storage capacities of multilevel cased in co-
channels for numerous clients, recently, the Jacket trans-
form and reverse Jacket transform based on Jacket ma-
trix have extensively proposed and investigated. For
more applications the readers may be referred to [20],
[21], [23], [24], [28]. With more increasing applications
of Jacket matrices and Jacket transforms, it will be more
interesting and important to study further properties of
Jacket matrices and their construction.

This paper is structured as follows. Section 2 discu-
sses the some properties of Jacket matrices. Section 3
presents the relation among Hadamard matrices, com-
plex Hadamard matrices and Jacket matrices. Section 4
presents the preliminary properties of Jacket matrices.
Section 5 presents the catalogue of Jacket matrices of
small orders. Section 6 presents the construction of Jac-
ket matrices based on center weighted Hadamard mat-
rices. Section 7 presents the J-Hurwitz Radon of com-
plex orthogonal Jacket space time code. Finally, some
conclusions are drawn in section 8.

II . Definition of Jacket Matrices

Definition 2-1:

Let A=(ax) be an nxn matrix whose elements are in
a field F (including real fields, complex fields and finite
fields, etc). Denote by A*, the transpose matrix of
elements inverse of A,i.e.A*=(a;t). A 1is called a Jac-
ket matrix if AA4"=4" A=nl, where I, is the identity
matrix over a field F.

Example 2.1

1 1
e e\ | @ Jm
Jao ) 1o
ac c (1)

so A is 2x2 Jacket matrix when a=c=1, it is a 2x2
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Hadamard matrix. ,

On one hand, from the definition of Jacket matrices,
it is easy to see that the class of Jacket matrices con-
tains complex Hadamard matrices, on the other hands;
Lee in [6], [15] defined the center weighted Hadamard
matrices W as following:

1 1 1 1
1 1 1 1
1—l —1— -1
W=l—w w -1 W = woow
Tl ow w1 1 1 ’
1 - —-——= -1
1 -1 -1 1 w w
1 -1 -1 1
(2)
and
WZHZWn®H27 (3)
where,

[1 IJ
Hz =
1 -1

is a 2x2 Hadamard matrix and n=4, 8, -, 4k, and ®
is the kronecker productm]. Clearly, by simple calcu-
lations, W4W4* =4I, Hence W, is a Jacket matrix. In
particular, if w=1, it is a Hadamard matrix and if w=2
it is a special center weighted Hadamard matrix. Fur-
thermore, there exists a permutation matrix P(each row
and column of P has exactly 1) such that PWaP"=P(W,
®H)P =HRW,, where P" is the transpose matrix of P.
Hence
w, W) =P’ (H,®W,6)PP" (H,®W,)P

2n  2n
T Wn Wn Wn Wn '
=P\ S | B2
T n n n (4)

Hence the Center Weighted matrices are also Jacket
matrices.

ll. Relations among Hadamard Matrices, Complex
Hadamatd Matrices and Jacket Matrices

In this section, we present some relations among real
Hadamard matrices, Turyn-type Hadamard matrices,
Butson-type Hadamard matrices, complex Hadamard
matrices and Jacket matrices. From their definitions, its
is easy to se¢ that set of all real Hadamard matrices
belong to the set of all Turyn-type Hadamard matrices
which belongs to the set of all Butson-type Hadamard
matrices which belongs to the set of all complex
Hadamard matrices. Further, the set of all complex
Hadamard matrices belongs to the set of all Jacket
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matrices.
Propositions 3-1

Let 4 be a complex Hadamard matrix. Then A4 is a
Jacket matrix.

Proof: Let A=(ap) be an nxn complex Hadamard
matrix. Then AA4'=nl, Morcover, a,a,=1/a,. There-
fore, A" =A" and 44" =44"=nl,

Now, we present some examples that illustrate their
converse do not hold.

Example 3.1: Let i’=-1 and

11 1 1
11 1 1 111

A:l i AR e ;zlz l:
I A 1 — - =

174 F 7 A

N 1 1 1

LFEF

(5)

Hence 4 is a Turyn-type Hadamard matrix and also
a DFT matrix, but not a real Hadamard matrix.

Example 3.2: Let w is a third root of unity, i.e., w=
273 2
e i=-1 and

1

1 1
11 1 o] L 1
B=|1 w w T “;
d v I = =
W W (6)
It is easy to see that
11 13%1 1 1
BB =|1 w w1 o w|= 37,
1 2 p ]. R 2
\ W w w W ) (7)

So B is a Buston-type Hadamard matrix, but it is not
a Turyn-type Hadamard matrix.

Example 3.3: Let ’=—1, w be a third unit of unity and
be a 6x6 complex matrix with the modular of each

11 1 1 1 1)©

1 w v w

.2
—iw
w
—iw

~i

—iw
2
W
.2
—iw

—i

: w1

(8)

entry equal to 1. By a simple calculation, it is easy to
see that

1 1 1 1 1 1
1 1 1 1 1

1 — - ) -
W mwoow W i

1 1 1 1 1

1 = = - = =
W Mmoo ow w i
PR R T B
w? mww w i
N T T S U
W m oW w I

1

T TS B S
i i i

®

and CC'=6;. Then C is a complex Hadamard matrix,
but not a Butson-type Hadamard matrix. Finally, the
center weighted Hadamard matrix is a Jacket a matrix
from the last section, but not a complex Hadamard
matrix.

It is well known that any pair columns of a real
Hadamard matrix is orthogonal, but pair columns of a
Jacket matrix may not be a orthogonal, for example, the
center weighted Hadamard matrix. In fact, even a real
matrix is both Jacket and row orthogonal which means
any its pair columns are orthogonal.

Example 3.4: Let

p L1y,
2
1 1 1 1) 23
2 2 2 -2 L1,
2
A=l3 3 _3 _3"4_125 C 31
- - D
11 11 by o3 72
2 2 2 2
L
23
(10)

Clearly, any pair of rows of 4 are orthogonal and A4 is
a Jacket matrix since A4’ =4[, but it is not a real
Hadamard matrix.

IV. Preliminary Properties of Jacket Matrices

We begin with some preliminary properties of Jacket
matrices in this section.

Proposition 4-1

An nxn matrix A=(ay) over a field F is a Jacket
matrix if and only if
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i a
orall j £k £ =0
forall j Zah
v a
forall j %k Y =0
all?]
= G 11

Proof: It follows from A4 =nl, if and only if A"
A=nl, that the assertion holds.

Proposition 4-2

For any integer n, there exists at least a Jacket matrix
of order n.

Proof: We construct an nxn matrix A=(ap) as
2mi 1
a, =exps—I(j-1{k-1); for j,k=1,..,n,
follows: { n (v )( )J ford

where =-1. It is easy to see that

I exp{%u-k)(z—l)}

(12)

for all j#k. Hence 4 is a Jacket matrix of order n.

Remark: There exists a Jacket matrix of any order,
although the existence of real Hadamard matrices is a
very tough equation. In fact, there is a conjecture on the
existence orders of real Hadamard matrices; there exists
Hadamard matrix of order 4n for any positive integer #.

Proposition 4-3

Let A=(apx) be nxn Jacket matrix.

M Ir |a1.k): Lforall jk=1..n then 4 is a complex
Hadamard matrix.

(2) If ay is real and @, =1 forall j,k=1,.,n , then A
is a Hadamard matrix.

Proof : (1) if |aul=1, then g, a,=1 and a;=
L Hence 4'=4" and 44’=Ad=nl, (2) It is obvious

jk

that ax==+1 and A4"=44" =nl,.

Proposition 4-4

Let 4 be a Jacket matrix.
(1) Then A", 47" and A" are also Jacket matrices.
(2) (det A)(det 4" )=n".

Proof: Since A is a Jacket matrix, AA" =nl,. SoA~!
=—;1—1-A. Hence A" (A* )Jr =A4" A=nl,. Thus 4" is a Jacket

matrix. Similarly, 4~ and A" are also Jacket Matrices.

(2) follows from that n"=detdA’ =detddetd’ .
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Proposition 4-5

Let A be nxn Jacket matrix and let D and E be
diagonal matrices. Then DAE is also a Jacket matrix.

Proof: A=(a,).D=diag(d,,...d,), E=diag(s....e,)
and E=D4E = (b,k) . Thus and &, =d,a,e,

R I
b

k=l Yp €, S Ay (13)

for all j#j. Hence DAE is a Jacket a matrix.

Proposition 4-6

Let A be nxn Jacket matrix and let be nxn Pand Q
permutation matrices. Then PAQ is also a Jacket matrix.

Proof: Since (PAQ) =QTA* P’ and Ad=nl,,
(PAQ)(PAQ)' =PAQQ" A' P'=nl,. (14)

Combining with the above propositions, we have the
following:

Theorem 4-7

Let 4 be nxn Jacket matrices if D and E are diagonal
matrices and P and Q are permutation matrices, then
PDAEQ is a Jacket matrix.

Now we may define that two Jacket matrices 4 and
B are equivalent if there exist diagonal matrices and
permutation matrices P and Q such that B=PDAEQ.
These equivalence relations may be regarded as a
generalization of the Hadamard equivalences relations in
the class of Hadamard matrices, in which permutations
and multiplying-1 of row and columns are allowed.
Hence for any Jacket matrix A4, there exist diagonal
matrices D and E and permutation matrices P and Q
such that the entries of the first row and column of
PDAEQ are equal to 1. So, that Jacket matrices are
called normalized Jacket matrices. If a normalized

A:
e 4 )> where e a

column vector of all one is, 41 is called the core of the
Jacket matrix 4.

Jacket matrix 4 is wriften as

V. Catalogue of Jacket Matrices of Small Orders

It is interesting questions for us to determine all
Jacket matrices of order n, since it will help us to
construct some real Hadamard or complex Hadamard
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matrices of order #» and to prove their non-existence. We
will describe all Jacket matrices of order n<4 in this
section.

Theorem 5-1

(1) Any Jacket matrix 4 of order 2 is equivalent to
the following matrix

( 11
J, = J
-l (15)
(2) Any Jacket matrix 4 of order 3 is equivalent to

the following Jacket matrix

1 1 1)
=11 w w
\1 w o ow (16)
1 1)
Proof: Let ) :l\l azzJ be a normalized Jacket

matrix. Then, from proposition 4.1, 1+a2,=0. Hence (1)
holds. Let

N

1 1 1
11 1) B'=|1 bi bi
B: 1 bZZ b23 » iz iz
1 b, & L= =
. 32 33 \ bn bB ) (17)

be a normalized Jacket matrix and its inverse matrix. By
Proposition 4.1, we have

l+b, +b, =0,

(18)

1+ 1 + 1 =0,
bzz bzz (19)
1+ b32 +l)33 = O, (20)

1+ L + L =0,
bzz b33 (21)

1+ bi + bi =0,
bzz bzz (22)

1+ bi + bi =0.
bzz bzz (23)

From equation (19), we have

1+ 02tbe g

bzzbzz (24)

Then by (18), bubs—1=0 which yields b23=%m.

Hence by (18), we have, #%,+ b,,+1=0 So, bn=w or
by=w’. Similarly, by (20) and (21), by=w or by=w’.

By (22) and (23), if bu=w, then by=by=w’. If b =w",
then, b3,=b;=w Therefore

11 1 1 1 1)
B=|1 w w

2 1 2
) ;] woow
\1 W w )

2
orB=|1 w w

(25)
Hence the result holds.

Theorem 5-2

Any Jacket matrix of order 4 is equivalent to the
following Jacket matrix

11 1 1
1 —w w -1
1 w —-w —1]|

Proof: Let B be a Jacket matrix of order 4. Thus B
is equivalent to the following Jacket matrix:

1 1 1 10

4 — 1 (122 aza (124
l t'132 033 aza
1

“ 27)

Then by Proposition 4.1,

1+ Gy Tty T 0y = 0, (28)
1+ i + L_;,. J_ =0,
Ay fy Gy (29)

1+ & +&+ ai =0
s (s y (30)

]+Hi+ai+h:0

>

Gy Ay Oy 31
1+ ai + & + ﬁ =0
Ay Ay Ay (32)

From equations (28) and (29), we have

Ay Uy, + Q@ + 0, + Gy + ((123 @y +ay, ta,+ 1) =0.
(33)

Hence
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(a,+1)(ay+1)(a, +1)=0. (34)
Similarly, we have the following equations

(a; +1)(a5 +1)(a, +1)=0. (35)

(a,+1)(a; +1){a, +1)=0. (36)

[ai+l](ai+lJ(£“—+lJ =0.
ay, Qs as, (37)

From equation (34), axn=-1, or an=-1, or ax=-1.
Without loss of generality, we may assume that a» —1.
From (35) and (36), we only need consider the follo-
wing four cases.

Case 1: az=— 1 and aqp=— 1. By (28), arxyy—™ — ans
Similarly, a3s=-a3; and as=-as. Hence by (30), an=
—ay and by (32) we have as3=—azs. Therefore

l+ &_ + & + ai =4,

1 a, Q5 a, (38)

It is a contradiction. Therefore this case is impossible.

Case 2: ap=-1 and asx# -1 We may consider the
following two subcases.

Subcase 2.1: as=- 1. From (28), a2=— az3. Similarly,
we have as=-as; and au=-agp. Then by (32),

(l—an)(l—aﬂ):(). (39)
Hence asp=1. Otherwise, ax=1, which yields a3;=1 So,
a 2

+-2=2-—=0.
Ay, Gy L (40)

l+ﬁ+ai
1 «a

P42

It is a contradiction. Therefore by (31), azn=- a3,
ay=ay. It is easy to this matrix is equivalent to the
form (26).

Subcase 2.2: as7= — 1. Then by (36), asu—1. Hence
from (32), it is easy to see that (l+az)(as—1)=0.
Similarly, from (35), we have (1 ~a23)(as — 1)=0. There-
fore ap=1. So it is easy to see that it is equivalent to
the form (26).

Case 3: an#-1 and asn#1. By similar to the
method of Case 2, we may show that 4 is equivalent to
the form (26).

Case 4: a;=-1 and a7 - 1. We only need consider
the following two subcases.

Subcase 4.1: a33#= — 1. We claim that as=-1. Other-
wise, as=—1 by (36). Then by l+antastan=0 and

22

l+&2_

T T

>

Ay 45 Ay (41

we have (1+asz)(1+as)=0. Hence ax=-—1. It is a con-
tradiction. Now from (31) and (32), we have (1 —a2)(as:
-1)=0 and (1-axs)(asw—1)=0. Hence ax=1 and it is
easy to see that 4 is equivalent to form (26).

Subcase 4.2: a3 — 1. Then as# — 1. By similar to
the method of subscase 4.1, we may show that 4 is
equivalent to form (26).

Remark: In Theorem 5.2, if w=1, then (26) is a real
Hadamard matrix; if w=1, then (26) is a tumn-type
Hadamard matrix; if w=2, then (26) is a center weighted
Hadamard matrix. Furthermore, from theorem 5.1 and
5.2, we may see that Jacket matrices of order 2, 3, and
4 are unique under equivalent relationship. It is natural
to ask whether Jacket matrices of order 5 are unique.

215

Let ¢ be fifth prime root of unity, ie., @=¢€"",

—5+\/§
a:
2 and
11 1 1 1
1 ¢ ¢ ¢ o
A=\1 ¢ ¢ o ¢
1 ¢ ¢ ¢ ¢
1 ¢ ¢ ¢ ¢ (42)
a1l 1 1 1 1
1 a1l 1 1 1
B=1 1 a1 1 1
1 1 1 a1 1
By a simple calculation,
11 1 1 1yY1 1 1 1 1
1 ¢ ¢ @ o1 ¢ ¢ ¢ o
44 =11 ¢ ¢ o |1 ¢ o @ ¢ |=5]
1 ¢ o o |1 ¢ ¢ o ¢
1 ¢ ¢ @ o)1 ¢ ¢ ¢ ¢ (44)
and
e R U
a+l1
a+l 1 1 1 1 lil 1 1
1 a+l 1 1 1 a+l
BB=| 1 1 a1 1 1)1 1 L 1 1 =5
a+l
1 01 1 anl 1 )
11 - 1
1 1 1 1 a+l 1 -3
11 1 1 2
a+1
45)
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Hence 4 and B are Jacket matrix of order 5. How-
ever, A is not equivalent to B. Moreover, there are at
least two Jacket matrices of any order #n>5 which are
not equivalent.

VI. Proposed Jacket Matrices Based on Center
Weighted Hadmard Matrices

In this section, we construct some Jacket matrices ba-
sed on Hadamard matrices. We first show the following
propositions.

Proposition 6-1

The Kronecker product of two Jacket matrices is also
a Jacket matrix.

Proof: Let 4 be mxm Jacket matrix and B be nxn
Jacket matrix. Then 44" =ml,, and BB=nl,. Clearly, (4®
B)f =4" @B, Hence

(ARB)(A®B) =(A2BYA" ®B")

=(44" YR(BB Y=mnl . (46)

So A®B is a Jacket matrix.

Proposition 6-2

Let 4 and B be two nxn Jacket matrices. Then
4 AB

[A —/%B]

is also Jacket matrix of order 2n, where A #0.

(47)

Proof: It follows from the definition of Jacket matrix

Example 6.1: Let

1 1 1 1 1 1
A=|1 w W |,B=|1 w w
1 v w 1 w W 48)
If A=1, then
1 1 1 1 1 1
1 w w1 W w
1 w w 1 w w?
1 1 1 -1 -1 -1
1 w w2 -1 —w2 —W
1 wow =1 —w )t (49)

Is a Jacket matrix of order 6. If A=1, then

1 1 1 2 2 2
1 w w2 2wl 2w
4 1 w? w 2 2w 2w’
Tl 1 2 20 221
1 w w -2 2w 2w
I w w -2 2w =24 (50)
is also a Jacket matrix, since
1 1 1 1 1 1
(S T T R T
W w W w?
S U T T ¥
1 1 w? W w? w
A'==4 == 1 1 1
6 Tt L 1 1 1 1
2 2 2 2 2 2
1 1 1 Al _ 1 __1_
2 2 2w 2 o Qw
l 1 1 _l IR 1
2 2w 20 2 2w 2w’
(51)
Theorem 6-3

Let 4, B, Ci and D; be the core of Jacket matrices
of 4, B, C, D of order n, respectively. Then AC" =BD" it
and only if

1 & & 1

Yo e 4 B e
e C -D —e

& —e -1

(52)

is a Jacket matrix of order 2n, where € is a column
vector of all one.

1 &

A=
Proof: since [e AJ is a Jacket matrix,

1 (1 eT_l e’ (1 eTJ—nI
e ale 4l afe S

Hence

e +e'd =0, (‘41 +I)e=0, ee” +AA =nl .

(54)
Similarly, we have
& +e'B =0, (Bl +I)e =0, e’ + BB =nl . (55)
e +e'C =0, (Cﬁ—[)e:O, ee’ +CCl =nl_. (56)
e +e'D =0, (D+1)e=0, ee +DD/ =nl,. 7)
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Hence, one onehand,

4CT_/1 er\(l eT)_[n 0 ]
Le A1J e C'lT 0 ee’ + AC]

and

BDT_(l J[l H 0 }
e B e D: 0 e +BD) (59)

Therefore AC' =BD’ if and only if A4,C)" =B.D;" .

On the other hand, by proposition 3.4, AC c4'
=n,1,=BD' DB’ Hence by AC' =BD", we have C4' =DB
' , Since A,B,CT ,DJr are invertible. Therefore, AC' =BD'
if and only if 41Cy' =B\D\’ and CA" =DB' if and only if
xx' =2,L,by a simple calculation.

(58)

Remark: In [22], they only gave the special case of
this form matrix to be Jacket matrices.

Corollary 6-4

Let 4 and B be Jacket matrices of order n with core
Ay and By respectively. Then

1 & & 1 1 & & 1
P e 4 B e _|e A § e

e 4 -B -el e A:'g -4 e

1 ¢ - -1 1 & -@ 1

are Jacket matrices of order 2

Proof: It follows from Theorem 6.3 by C=A4, D=B;
and B=A, C=D=A" respectively that the assertion holds.

VII. J-Hurwitz Radon of Complex Orthogonal
Jacket Space Time Code

Conventionally the Hurwitz-Radon (HR) family of
matrices was defined in [25]~[28] for deriving the
orthogonal STBC design. In this section, we present its
extension theory, called j-Hurwitz-Radon units [29] and
J-sip units [7], [14] as follows:

Definition 7-1
A nxn complex matrix S is called a size n j-rotation

Hurwitz-Radon (HR) unit if S$s=I and §"= —jS, where
H is the Hermitian of the complex matrix.

Definition 7-2

For nxn complex matrix as Z is called a size n-sip

24

unit when Z7Z=I, det(ZH y=—det(Z), and Z'=7", where
det() is the determinant of matrix, and * denotes the
conjugate of the matrix.

In equation (2), we have changed the j instead of w
in center part [6], then [15] by taking the diagonal terms
of this [J]a,

1 1 1 1
1 1 i1 1 1 1
. i 1 —=— =
V=, 71/ T|ewdpol'= [ 7
1 g i-J 11 _
H 1 - - 1
1 -1§i-1 1 J J
1 —1 —1 1

we can obtain the two j-HR units |/ 0|1 0] and

1 0][-5 ©
two j-sip units [0 ~J }{ 0 1]' Next, based on these
forms, we may denote the full rate two antennas
j-rotation orthogonal STBC as

A,:Sl jsz*zl 0]l s 0*+Ojs;07
8, —Js 0 —j||0 s 1 0}]0 s

J—sp j—HR
(62)
and
AZ:—js,szz—j0310+Ols;0
js s 0 1|0 &| |j 0]J|lo s
J=sip Jj—HR
(63)

where, 41 and A, satisfy the STBC design criterion as
[25]~[27],

41H‘41 :(: S:K SZ :||:Sl
_jS; jsl 8

and

e el R R R TN

8, 8 J5, &

AR

(64)

(65)

We can also construct the 1/2 rate complex ortho-
gonal space time codes from [28]. The Jacket matrix
can de decomposed as

1 1 1 1
I s

ho =y ;| od Plg=| 2, )
1 -1 -1 -1

(66)
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thus we can design two kinds of space time block co-

des.
1 0 1 0 01 0
A= B-= = D=7
Let 0 —j 0 -1 10 10

Then, left hand side 4x2 Jacket matrix Cp is

4 s, C 5, As, Cs,
Ol I P S R L I el N R
_B 3, D s, Bs, Ds,

—

5 0 0 s LA
- 0 —Js 52 0 % —J5
soo Mo s Tls s
Lo = 5; 0 5 -8 (67)

where symbol 0 is the Hadamard productm].
Therefore,

$ S,

» x ) .
- Sl SZ 5 3, 3, —J%
() [ e M
SZ ]Sl =75 5 él J‘Sz

B B

A -3

¥ e e «
S8, IS T S T8 S,

2(‘31 |2 - lsz |2)

32*51 +jszsl*_.jszs:—s;fsl 2(‘5‘1 r +\Sz ‘2)
=2(fs [ + [ )l7]
\ G AR I (68)
Similarly, from the right hand side 4x2 Jacket matrix
Ciis
- A s . C . sz* _ As, . Cs,
B |s Dy s, Bs, Ds,
5, 0 0 s s, s,
0 -5 js, 0 Js, -5
= * + * = * #* E
*J’Sl 0 0 §; _Jsl 5
0 s, -s, 0 -5, s (69)

Sl SZ

s —j Js, -8, || j&, s

B | 1 2 2 1

[l [c]=1 . J AT
_ —js -

5, 8 5004 75 5

-5 s

(70)

The 1/2 code rate complex orthogonal space time
code satisfies the equations (68) and (70) as [28, PP.
82], yielding the full transmits diversity.

VI. Conclusion

We establish some relations among Hadamard matrices,
complex Hadamard matrices and Jacket matrices. At the
same time, some properties of Jacket matrices are
obtained, in particular, the Jacket matrices of small or-
ders no more than 4 are unique up to equivalent
relationship, but there exists two Jacket matrices of all
order n>5 which are not equivalent and also we
designed the full rate and 1/2 rate complex orthogonal
space-time code from Jacket matrices. The properties
which we are defined in this paper may be used for
Jacket matrices to be applied in signal processing,

coding theory, and orthogonal code design[l8]’[201’[21]’[23]’
[24],[29]
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