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Two-Wheeled Welding Mobile Robot for Tracking a Smooth Curved

Welding Path Using Adaptive Sliding-Mode Control Technique

Abstract: In this paper, a nonlinear controller based on adaptive sliding-mode method which has
a sliding surface vector including new boundizing function is proposed and applied to a two-
wheeled welding mobile robot (WMR). This controller makes the welding point of WMR
achieve tracking a reference point which is moving on a smooth curved welding path with a
desired constant velocity. The mobile robot is considered in view of a kinematic model and a
dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and
external disturbances by adaptive sliding-mode technique. To design the controller, the tracking
error vector is defined, and then the sliding surface vector including new boundizing function and

the adaptation laws are chosen to guarantee that the error vector converges to zero asymptotically.

The stability of the dynamic system is shown through the Lyapunov method. In addition, a
simple way of measuring the errors by potentiometers is introduced. The simulations and
experimental results are shown to prove the effectiveness of the proposed controller.
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welding mobile robot.

1. INTRODUCTION

Welding automation has been widely used in
several manufacturing fields, and one of the most
complex applications to manufacturing fields is a
welding system based on autonomous robots. Some
special welding robots can provide several benefits in
certain welding applications. Among them, a welding
mobile robot used in line welding application can
generates the perfect movements at a certain travel
speed, which can produce a consistent weld
penetration and weld strength.

In practice, some various robotic welding systems
have been developed recently. Kim, er al. [1]
developed a three dimensional laser vision system for
an intelligent shipyard welding robot to detect the
welding position and to recognize the 3D shape of the
welding environments. Jeon, er al. [2] presented the
seam tracking and motion control of a two-wheeled
welding mobile robot for lattice welding; the control
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is separated into three driving motions: straight
locomotion, turning locomotion, and torch slider
control. Kam, et al. [3] proposed a mobile welding
robot for straight welding path using body positioning
sensors and seam tracking sensor. Both of controllers
proposed by Jeon and Kam have been successfully
applied to the practiced field. Chung, et al. [4]
proposed a sliding mode control for a mobile robot
tracking a smooth-curved path even in the system
with known bounded disturbance. In practice, it is
very difficult to know the bounded disturbance of the
WMR because the pressure of welding arc makes
nonlinear disturbance to the WMR. A long welding
power cable and CO, gas tube are connected from
welding system to the WMR of GMAW (gas metal arc
weld) process. Furthermore, most of previous sliding
mode control methods are applied to mobile robot for
tracking a reference path but cannot eliminate the
error perpendicular to its heading direction although
the angular error of the mobile robot achieves to zero
firstly. Therefore, in their simulation and experiment
results, the posture of the mobile robot is chosen so
that the error perpendicular to its heading direction
converges to zero before the angular error converges
to zero.

To solve these problems, a nonlinear controller
using adaptive sliding-mode method which has a
sliding surface vector including new boundizing
function is proposed and applied to the WMR for
tracking a smooth curved welding path. The new
boundizing function is applied to design sliding
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2. WMR SYSTEM . -
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In this section, the kinematic and dynamic models . .
of the WMR are considered with nonholonomic Fig. 2. WMR configuration.
constraints system. The WMR is modeled under the
following assumptions: @ :Angular velocity of the WMR’s center

(1) The radius of welding curve is sufficiently larger
than the turning radius of the WMR,

(2) The robot has two driving wheels for body motion,
and those are positioned on an axis passed
through the robot’s geometric center,

(3) Two passive wheels are installed in front and rear
of the bottom of mobile platform for its balance,
and their motion can be ignored in the dynamics,

(4) The mass center and the rotation center of the
WMR are assumed to be same,

(5) A torch slider is controlled by torch-slide-driving
motor and located so as to coincide with the axis
through the center of two driving wheels,

(6) A magnet is set up at the bottom of the robot’s
center to avoid slipping,

(7) The uncertainties and external disturbance are
assumed to be unknown and bounded, and also
their derivatives are assumed to be zero.

The model of the WMR as shown in Fig. 2 has
nomenclatures as the following:

(x, ¥) :Coordinates of the WMR’s center [m]

@ :Heading angle of the WMR [rad]
v :Linear velocity of the WMR’s center [m/s]

[rad/s]
s Dy -Angular velocities of the right and the left

@
wheels [rad/s]
(x> ¥, ) :Coordinates of the welding point [m]

b, :Heading angle of the welding point [rad]

Vi :Linear velocity of the welding point [m/s]

@,, :Angular velocity of the welding point
[rad/s]

x,, ¥, :Coordinates of the reference point [m]

v, :Desired constant welding velocity [m/s]

@, :Angular velocity of the reference point
[rad/s]

@, :Reference heading angle [rad]

b :Distance between driving wheel and the
symmetric axis [m]

r :Radius of driving wheel [m]

/ :Torch holder length [m]

T :Control input vector [Kgm]

T,y Tpe -Torques of the motors acting on the right

and the left wheels [Kgm]
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m, :Mass of the body without the driving wheels
(Ke]

m,, :Mass of each driving wheel with its motor
[Kel

I, :Moment of inertia of wheel and its motor
about the wheel axis [Kgmz]

1, :Moment of inertia of wheel and its motor
about the wheel diameter axis [Kgm?]

I, :Moment of inertia of the body about the
vertical axis through the mass center of the
WMR [Kgm?]

M(q) :Symmetric, positive definite inertia matrix

V(q,q) :Centripetal and coriolis matrix
B(q) :Input transformation matrix

A(q) :Matrix related with the nonholonomic
constraints

Yy :Constraint force vector

e :Tracking error vector

u :Controller vector.

2.1. Kinematic model of the WMR

Consider a robot system having an n-dimensional
configuration space with generalized coordinate
vector q =][q,..., qn]T and subject to m constraints
of the following form:

A(g)q =0, (D
where A(q) e R™" is the matrix associated with the
constraints.

As a result, the kinematic model under the
nonholonomic constraints in (1) can be derived as
follows:

q=J3(qz, @

where J(q) is a nx(n—m) full rank matrix satisfy-

ing 37 (q)AT(q) =0, and ze R"™ is velocity vector.
Firstly, the posture of mobile robot for the center
point of WMR, C(x, y) n the Cartesian space in Fig.

2, is defined as

q=[xy.4". 3)

If the mobile robot has nonholonomic constraint
that the driving wheels purely roll and do not slip,
A(q) in (1) can be expressed into

A(q)=[-sing cosg 0] 4)

From (3)-(4), n=3 and m=1.
The velocity vector in (2) is defined as

z=[v a)]T. (5

N’

In the kinematic model of (2), J(q) is written as

cos¢g O
J(q)=|sing O (6)
0 1

The relationship between v, @ nd the angular
velocities of two driving wheels is given by

Vr b/
Gy | _| L7 v ' ™
Dy, /'r -b/r||@
Secondly, the kinematic equation of the welding
point W(x,,y,,) fixed on the torch holder can be

derived from the WMR’s center C(x,y) in Fig. 2 as
following [6]:
x, =x—Ising
v, =y+Ilcosg ®)
é, = 9.
The derivative of (8) yields
x —Ising

cos¢ —lcosg

Yy |=|sing —Ising {v:l+ Icosg |, ©®
bo) L O T 0

where [ is controlled by torch-slide-driving motor.
The coordinates (x,,y, ) and the reference heading
angle 4, R, which is
moving on the reference welding path with the desired
constant velocity of v,, satisfies the following

of the reference point

equations:

X, =V, Cos¢,
Y, =v,sing, (10)

¢r =a,.

In Fig. 2, the error vector e=[e|,ey,e3 ]T is
defined as the difference between the welding point of
WMR and the reference point. The relationship of the
error vector between the global coordinate and the
WMR’s coordinate can be expressed as follows:

2 cos¢g sing O|lx —x
e |=|—sing cos¢g O]l y.—y]| (11)
) 0 0 1 ¢r '—¢

The first derivative of error vector yields

é -1 e +1 Vv, COSe;
y .
é2 =] 0 —€ li :|+ Vrsine3_l . (12)
0

R [13]
€3 -1 @,
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2.2. Dynamic model of the WMR

The dynamic equations of the mechanical system
under nonholonomic constraints in (1) can be
described by Euler-Lagrange formulation as follows

[5):
M(q)i + V(g,9)q = B(@)r - AT (@), (13)

where M(q)e R"™" is a symmetric positive definite
inertia matrix; V(q,q)R""", a centripetal and
Coriolis matrix; B(q)e R"*", an input transforma-
tion matrix; A(q) e R™"", a matrix of nonholonomic
constraints; tTeR”, a control input vector; and

LeR”, a constraint force vector. For simplicity of
analysis, it is assumed that r=n-—m.
Differentiating (2), substituting this result in (13)

and multiplying by J T the constraint matrix
AT(q)k is eliminated. Dynamics in platform system

of the nonholonomic mobile robot with the constraint
in (1) is as follows [5]:

MY+ MI+VHz=3"Br (14)

Multiplying by (J T B)_1 , (14) can be rewritten as
follows:

M(q)z+ V(g,§)z =7, (15)
where

M(q) = 37B)/I"TMJ e R™(""™),

V(g,z) =@"B)"' 37 (MJ + VI) e R,

In this paper, the behavior of the welding mobile
robot in the presence of external disturbances

T4 €eR™ lis considered. The real dynamic equation

of the welding mobile robot with the external
disturbances can be derived from (15) as follows:

M(q)z + V(q,q)Z+T4 = T. (16)

It is assumed that the disturbance vector can be
expressed as a multiplier of matrix M(q) as the
following:

4 = M(9)f, (17)

where fe R 7™ is the vector of uncertainty and
the external disturbance of system.

By a feedback linearization of the system, the

)x1

controller vector ue R is defined by computed-

torque method as follows [5]:

T=M(q)z, + V(q,§)z +M(q)u, (18)

where z, e R"™ g reference input vector.
From (16), (17) and (18), (19) is obtained.

f=u-(2-1,) (19)

In this paper, when q =[x, y, ¢]T is taken, that is,
n=3, m=1 and r=2. The followings are obtained
from (16)-(19).

2
r .
0 —m,d
V= 26 ¢ ¢
=, ,
L m d¢f 0
2b ¢
o, ?o s (20)
~—2(mb +[)+]w —z(mb —1)
M= 4p 4b ’
i(mb2 ! i(mb2 + ) +1
4b* 4p* v
‘rz[r,,w r]w]T, m=m,+2m,,

I=md*+2mpb* +1, +21I,,

Z, =[vr a)r]T’ f:[f1 fZ]T'

3. ADAPTIVE SLIDING-MODE
CONTROLLER DESIGN

Our objective is to design a controller so that the
welding point W tracks the reference point R at a
desired constant velocity of welding v,.. So the

designed controller makes the WMR achieve e —> 0
as [ — .

In this paper, the WMR is controlled in two cases:
fixed torch slider and controllable torch slider. In the
second case, the length of the torch is controlled by
torch-slide-driving motor.

3.1. Controller design for fixed torch

In this case, the / is equal to zero. To design an
adaptive sliding mode controller, the sliding surfaces
are defined as follows:

Sl él +klel
$= =1 . , (21)

52| & +hkaes +hy(e)e,
\
1 w(es)

1
{V A A
-2¢ -¢ 0 ¢ £ &

Fig. 3. Characteristic of () function.
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where ki, k, and k5 are positive constant values; a
boundizing function () is defined as follows:

01
w(e)=11-0

if |ey|<e
if |es|=2¢

(22)
no change if £< |e;| <2, '

where ¢ is positive constant value. “No change”
means the value of w(-) function continuously keeps

its value at point e; =*& or e; =+2¢ before e;

enters into £ < |e3| < 2e.

On the sliding surface vector (s=0), the
followings are obtained from (21):

él = _klel, (23)

é3 = —k2€3 — k3 l//(e?,) €. (24)

In (23), if ¢ is positive, ¢ is negative, and vice
versa. Thus, the equilibrium point of e; converges to
zero as ¢ —> oo, It means the error ¢ >0 as f >
along the sliding surface (s, =0).

Because the configuration of the WMR has the

welding point which is fixed on the axis through the
two contact points between driving wheels and floor,

the error e, can be eliminated via e;. But, in the
case of e; =0, the value of e, is constant because
WMR is running parallel with reference trajectory.
For that result, the error e; and its derivative in (24)
cannot be zero in order to eliminate the error e,
when the error e, #0.

In case of 'e3|>5, firstly, w(-) is inactive until
'63( <é&. So(24) becomes é; =—kye;. Similarly with
(23), e; converges into (—¢ ). Secondly, when
(e3| <&, w(-) isactive in [e3| <2¢. So (24) becomes
é =—kye; —kze,. This result makes error e; be
changed according to the value of error e,. Based on
the specific configuration of the WMR, this
phenomenon forces e, —» 0. When e, =0, (24)
becomes é; =—kre;. So e3 >0 as t—oo. The

convergence to zero of error vector e is shown
clearly in Figs. 10, 11 and 14 of the simulation results
section.

The following procedure is to design an adaptation
law vector f) and a controller vector u which
make the sliding surface be stabilized and converge to
Zero as t —> oo

Firstly, the adaptation law is proposed as the
following:

p=5""s(r), 25)

T
where ﬁz[,bl ,52J is an estimate value of f =

T _ -1

(7 n]s e {‘f“ ,

0 $x»

matrix which is denoted as an adaptation gain.
The estimation error is defined as follows:

} is positive definite

p=f-p = p=f-p (26)

Secondly, the controller vector u is chosen as
follows:

T
u=[u1 u2:l

_[(v, sin e; — e + )+ (ey + )i —v, sin ey(w, — o)

0
ki[ey +l]o—v+v, cose
+ .
ky (@, — @)+ ks (e3)(v, sin e3 — — e
+Qs+ |P| sgn(s).
@7
From (12), the (27) can be rewritten as follows:
. [(e‘2 + D+ (e + D> v, sin eﬂ
0
(28)

[ kié
+ ) ]
kyes + ks y(es) &

] +Qs +|P| sgn(s),

o 0
where Q :l:q(l)l 0 jland iPl =l:f)ll ' . l:' are positive
922 P2

definite matrices.
Theorem: The above controller vector u and

adaptation law vector f) with the assumption (7)

make the sliding surfaces in (21) be stabilized and
converge to zero as t—>o. From (21)-(24), this
implies that the error vector e —> 0 as f—» 0.

Proof: Because the welding velocity is constant,
v, =0. From (12), the first and the second derivatives

of ¢ and e; yield

é | |vcose3+(ey+Nw—v
é - _(a)_wr) ’

{e& } _ {(e‘2 + Do+ (ey + Do —v,é sine3]
(30)

& 0
-9
(a')_d)r) '

Using (19) and (28), (30) can be rewritten as follows:

(29)

|
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& 0

gl o ~ ké
L.J— f-Qs ’P]sgn(s) L‘z% ‘hy V/(€3)é2:|' (32)

From (21) and (32), the first derivative of the
sliding surfaces yields

§ [élH 4é } f—Qs~|P|sgn(s). (33)
= =f —Qs—|P|sgn(s).
& | k& +hsp(e)e, =

The following Lyapunov function is chosen as

[.é:]}:f_u+[(é2 + Do+ (e + Do —v, 6, sineﬂ, 1)

1+ 1.7
V=—s's+= >0. 34
5 5P &p (34)

Its derivative yields
V=s's+p Ep. (35)

The derivative of (26) and the assumption (7) yields

p=f-p=—p. (36)

Therefore, the derivative of Lyapunov function is as
follows:

v =—sTQs+s"f —s" [P|sgn(s) + (17 —pT)Ep

37
- T Qs (\sTﬁ‘ ~sTp)<—sTQs <0. G7)

Since ¥ =0 and ¥ is negative semi-definite, by
Barbalat’s lemma, s —> 0 as ¢-— oo. From (25), this
implies that p has constant value as ¢—> 0. From

(21), (23), and (24), this implies that e —>0 as
t—>w. When e—>0, the welding point of the
WMR achieves tracking a reference point which is
moving on a smooth welding path at a specified
constant velocity. 0

3.2. Controller design for controllable torch
In the welding application field, the welding
velocity is very slow, which is 7.5mm/s. Therefore,

if there exists an error e,, the WMR takes a long

time to converge the errors vector e to zero. To
solve this problem, a sliding controllable torch holder
is replaced for fixed torch holder in the previous case.
A torch-slide-driving motor is used to drive the sliding
torch. In this case, the length / is changeable so
(i # 0). Furthermore, a new update law [ for sliding
controllable torch is designed.

The same concept with the previous case, a new
sliding surface vector s and a new controller vector
u are obtained from (21)-(28) with (/ #0).

To design an update law for sliding controllable

ommeemmenenney N s f) P o
; } plea eopefea @S] ] [ }
{ Reference 1} a. (21) a. (25) f on | [eq. (7)

values ;
J«il N Ea. )
By sensor 14 Ea. (19)|—»lEq. 74 q
o Ea. (28) i)
T z z
Eq. (18) Eq. (16)
71z [ e ®
g —
dt : / 2" "Real position %
L T ea wo-tan [ j $ of the welding &

L point Eq. (3) 4

...............

Fig. 4. Block diagram for tracking a reference weld-
ing path.

torch, a Lyapunov function candidate for error e, as

follows:
1
V,, = Eeg >0, (38)
V, =eyé, =e,(—ea+v,sine; — Iy. 39

The update law for sliding controllable torch is
achieved by V,, <0 as follows:

[=v,sine; +kye; — e o. (40)

To avoid overshot controlling of e,, the

maximum speed of sliding torch has to be limited by
saturation function below

i if Iil<5(vr)

sat(l) = .
5o, i |i|> 60,

(41

where J(v,) is positive value which depends on v,
is chosen by designer.

Clearly, ¥ >0, V,,>0, V<0 and ¥, <0 with
the proposed controller vector u, adaptation law

vector f) and update law I are satisfied. So the

error vector ¢ >0 as 1 > ow.

For tracking a reference welding path, based on the
error vector which is derived from touch sensor, the
angular velocities of left and right wheels of the.
WMR are obtained by the following block diagram
Fig. 4.

4. SIMULATION AND EXPERIMENTAL
RESULTS

To wverify the effectiveness of the proposed
controllers, the simulation has been done for the two
cases of fixed torch and controllable torch with a
smooth curved reference welding path. Fig. 5 shows
the reference curve welding path with straight line of
Ly =112mm, arc curve line of (R =95.5mm, 45°),

straight line of L, =36mm, arc curve line of
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Fig. 5. Smooth curved reference welding path.

(R, =95.5mm, 45°) and straight line of L; =38mm.

The simulation results show the error vector
converges to zero faster in the case of controllable
torch than in the case of fixed torch. Furthermore, the
experiment has been done for the controllable torch
case.

4.1. Hardware of the whole system

Fig. 6 shows configuration of the control system.
The control system is based on the integration of two
microcontroller PIC18F452s: one is used for two
servo DC motor control signal of left wheel and right
wheel. Another is used for servo torch slider controller
and main center processor unit (CPU). The three servo
controllers are controlled by CPU., The main
controller functionalized as master links to the three
servo controllers via I2C communication.

The two A/D ports of the CPU are connected with
the two potentiometers for sensing the errors as
considered in Section 4.2. Two microcontrollers
PIC18F452s are operated with the clock frequency
40MHz. The servo DC motor has 16-bit register for
the capture module which is used for receiving signal
from motor-encoder and PWM module for controlling
the PWM of DC motor. The sampling time of control

Left Touch sensors
Gearbox wheel Encoder 1. Linear potentiometer
Motor 2. Angular potentiometer

e — J |
—__L___¥

Servo Controller of )
I “leftwheel motor
|-

Left
Wheel

Main CPU |
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PIC18F452 b

wwoy 5g|

)
5
@
2
s
&
g

|

A

—— e — = [ -
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] |
I right wheel motor H (forch slide driving motor |
—

R ¥ Iy W n

7

Right TJorch

Right slide Torch
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Fig. 6. Configuration of the control system.
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Fig. 7. Experimental welding mobile robot.

system is 10ms.
The experimental WMR is shown in Fig. 7 and its
dimensions are shown in Table 1.

4.2. Measurement of the errors ¢;, e, €3
In order to measure the components of the error
vector e, a simple measurement scheme using

potentiometers is shown in Fig. 8. Two rollers are
placed at points O, and O;. Two sensors for measuring
the errors are needed. That is, they are one linear
sensor for measuring d, and one rotating sensor for

measuring the angle between the torch and the tangent
line of the wall at the welding point.

From Fig. 8, the relation of the components of error
vector e can be expressed as follows:

€ =—rgsine;,
e =d, +r, ]cose3|, (42)
ey = £(0,05,0,E) - /2,

where O, and O; are the center points of rotor
0, and Oj respectively, O; is the center point of
0,05, E is the point on torch holder, r; is the
radius of the roller, d, is the length measured by the
linear potentiometer, and e; is the angle measured

by the rotating potentiometer. In Fig. 8, the welding
path is a line. When the welding path is a curve, (42)

Reference e

welding path !
& R(x 7Y Vi

Fig. 8. Scheme for measuring the error vector e.
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Fig. 9. Touch sensor.

is also valid if the distance O,0; is sufficiently small
and the radius of the welding path is enough large.

4.3. Simulation and experimental resuits
The welding speed in this application is v, =7.5

mm/s. The sampling time of control system is 10ms.
The designed parameters are as follows: k =
205!, ky =6s7", k3 =120s7!, £ =3°, Q=[(30s”! 0);

(0 10s™)], the initial estimated value Po =

Table 1. Parameter values of the WMR.

Parameter Value Unit
b 0.105 m
r 0.025 m
m,, 0.2 Kg
I, 3.75x107 Kgm’
/ 0.145 . m
m, 10 Kg
I, 0.2081 Kgm®
L, 4.96x10™* Kgm’

Table 2. Initial values for the simulation and experi-

ment.

Parameter Value Unit
X, 0.2 m
x,, 0.204 m
v 0 m/s
@, /2 rad

/ 0.145 m
¥, 0.200 m
Vi 0.195 m

@ 0 rad/s

¢ 84° or 96° deg
o, 0 rad/s

[(6mms‘2 degs’z)], the adaptation gain vector
E=[(10s% 0); (0 10s72)], k4, =0.55" and S(v,)=

0.05ms™".
Two initial error vectors are considered as follows:
eo = (5.4mm, 4.9mm, — 6deg) and ey, =(4.6mm, 6

mm, 6deg).
The WMR’s parameters and the initial values for
the simulation are given in Tables 1 and 2.

4.3.1 Simulation results for the case of fixed torch
In this case, the tracking error vector has been
simulated with two different initial error vectors eg,

and ey, asshown in Figs. 10 and 11.

Fig. 10 shows that firstly, w(-) in (24) is un-active
and the error e; intends to converge to bounded
limit (-& &)=(-3° 3°). Secondly, when |es|<¢,
w(-) is active in the bounded (-2& 2¢) at this time
e, #0. So e, is changed in order to converge e,
to zero. When e, —0,the part [k3(e3)e;] — 0,
too. Therefore, error ey is decreased as e, is

decreased. Finally, when e, >0, ¢; — 0.

Tracking error vector
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!
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!
I
{
{
I
I
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Fig. 10. Tracking error vector with initial error vector
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Fig. 11. Tracking error vector with initial error vector
€0>-
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0.2

Fig. 12. Movement of the WMR with fixed torch by
initial error vector e,.

Fig. 11 shows that firstly, there is e, #0 when
e; converges to bounded limit (—¢ &). Due to the
characteristic of yw(ey), ey is changed in order to
converge e, to zero. In this case if the error
e; >2g, y(e3) isun-active. So e3 approaches into
bounded limit (-& &) again. This phenomenon

forces the error vector e to be zeroas ¢ — 0.

Fig. 12 shows the movement of the WMR along the
reference welding path with the initial error vector
eg, . The proposed controller makes the error vector

e—>0 as t—0 and the WMR track the whole
reference welding path very well and tightly. In Fig.
12, it nearly takes about 25 seconds to converge the
vector error e to zero. So this disadvantage is
overcome by controllable torch.

4.3.2 Simulation and experimental results for the case
of controllable torch

The WMR with controllable torch moves along the

reference welding path with the same initial error

vector eq, as shown in Fig. 13.

In the case of controllable torch, the error vector e
converges to zero faster than in the case of fixed torch
as shown in Fig. 14. After about 5 seconds, all the
errors converge to zero during the welding process.

Fig. 15 shows the simulation and experiment results
for tracking error vector with initial error vector eg;

during 12 seconds at beginning. It shows that the
experiment result of the tracking error vector is
bounded along the simulation result.

Fig. 16 shows the angular velocity of the center of
the WMR o for tracking straight line, arc line,

0.45

)
e
w
[5,)
T

03

Y coordinate (m

0.25

’@ Trajectory of welding point

0.2 i E

! L '

0.2 0.25 0.3 0.35
X coordinate (m)

Fig. 13. Movement of the WMR with torch control-
lable by initial error vector eg;.
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45 B
5 )
gD
[
2 e, (mm)
% ( 1
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j=) e
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S ;
H
E L e e ]
= i
i
) 1
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Time (s)
Fig. 14. Tracking error vector with initial error vector
€g1-

Simuiation results

Tracking error vector ¢

Experimental results

0 2 ‘ 5 5 10 12
Time (s)

Fig. 15. Simulation and experimental results with

initial error vector ey, for 12 seconds at

beginning.

straight line, arc line and straight line of the fully
reference welding path. The angular velocity @ has
a little larger chattering during tracking the arc line
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Fig. 16. Angular velocity of center of the WMR.
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Fig. 20. Controller vector u.
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Fig. 21. Experimental results of controller vector u
for 12 seconds at beginning.
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than during tracking on the straight line because the
sliding mode is more effective on the arc line than on
the straight line.

Fig. 17 shows the angular velocities of two wheels
of the WMR. It shows that the vibration of angular
velocities is larger for tracking an arc line than for
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tracking a straight line. So Fig. 18 shows that the
vibration of welding speed is larger for tracking the
arc line than for tracking the straight line. The linear
velocity of welding point in Fig. 18 is v, =v, +
0.6mm/s. In the practice of welding field, the error of
welding velocity around 1.2mm/s is acceptable.

Fig. 19 shows that the value of sliding surface
vector s converges to the average value of zero very
fast during the welding process. The vector s have
some stranger pulses at the position where the
reference welding line is changed from straight line to
curve or vice versa but it converges very rapidly to an
average value of zero.

Figs. 20 and 21 show that the simulation and
experimental results of control vector u are bounded
and their average value converges to zero.

Fig. 22 shows that the linear velocity of controlla-
ble torch is zero and the length of torch slider is
constant when error vector converges to zero. It
means that the controllable torch acts as the fixed
torch when error vector converges to zero.

Because the sliding surface vector has an average
value of zero, by adaptation law in (25), the estimated
values of disturbance converge to their constant value
as shown in Fig. 23.

5. CONCLUSIONS

A nonlinear controller based on adaptive sliding-
mode method which has a sliding surface vector
including new boundizing function to enhance the
tracking performances of the WMR has been
introduced. The controller vector is robust and
unsensitive in spite of uncertainties and external
disturbances. To achieve the controller vector w,
adaptation law vector and update law of the WMR are
considered in view of a kinematic model and a
dynamic model. The error configuration is defined
and then sliding surface vector including new
boundizing function is chosen. The error vector of
system asymptotically converges to zero as reasonable
as desired. A simple way of measuring the errors is
also proposed. The stability of the system is
considered in the sense of Lyapunov method. The
simulation and experimental results show that the
proposed controller can be applicable and
implemented in the practical field.
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