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THE FINE SPECTRA OF THE RHALY OPERATORS
ON c.

M. YILDIRIM

ABSTRACT. In 1975, Wenger [4] determined the fine spectra of
Cesaro operator C7 on ¢, the space of convergent sequences. In
[7], the spectrum of the Rhaly operators on ¢y and ¢, under the
assumption that nlilgo (n+1)a, = L # 0, has been determined.

In this paper the author determine the fine spectra of the Rhaly
matrix R, as an operator on the space ¢, with the same assump-
tion.

1. Introduction

In this paper, s; ¢; ¢*; T*; X*; B(X); A mo(T, X); o(T, X); O(1);
will denote the set of all sequences; convergent sequences; sequences
such that ), | ) |< oo; the adjoint operator of T'; the continuous
dual of X; the linear space of all bounded linear operators on X, say,
T on X into itself; the transposed matrix of A; the eigenvalues of T’
on X; the spectrum of 7" on X; capital order, that is, xz,, = O(1) if
there exists M € R such that | z,, |< M for all n, respectively.

In addition, we assume that; given a scalar sequence of a = (a,),
a Rhaly matrix R, = (a,x) is the lower triangular matrix where
Qnp = ap, k < n and a,, = 0 otherwise. Let S denote the set
{a, : n=0,1,2, ... }.

(a) L = lim,(n + 1)a, exists, finite, and nonzero,
(b) a, > 0 for all n, and
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(c) a; # a; for i # j.
(d) a = (a,) is monoton decreasing.

In 1975, Wenger [4] determined the fine spectra of Cesaro oper-
ator C7 on ¢, the space of convergent sequences. In [7], the spec-
trum of the Rhaly operators on ¢y and ¢, under the assumption that
lim (n+ 1)a, = L # 0 has been determined. Also in [3], [8], [9],

n—oo

[10], [11] and [12] the Spectrum of Rhaly Operator over some kinds of
spaces has been determined.

Under the above conditions, the purpose of this study is to deter-
mine the fine spectra of Rhaly operator R, as an operator on the Ba-

nach space ¢ of convergent sequences normed by || x ||= sup,>q | Zn |-

If X is a Banach space and T' € B(X), then there are three possi-
bilities for R(T'), the range of T"

(I) R(T) = X

(I) R(T) = X, but R(T) # X,

() R(T) # X
and three possibilities for 7 !:

(1) T~! exists and continuous,

(2) T exists but discontinuous,

(3) T~! does not exist.

If these possibilities are combined in all possible ways, nine different
states are created. These are labelled by: Iy, I, I3, I'1y, I, 13, I11;,

I11y, I113. If an operator is in state 111, for example, then R(T) # X
and T~ exist but is discontinuous (see [1]).




THE FINE SPECTRA OF THE RHALY OPERATORS 137

111
111,
1T
I3
Il
15
I3
I

I

T*

I, I, Iy IT, I, ILITLITLITI,

T

FIG.1: State diagram for B(X) and B(X™)

for a non-reflective Banach space X

If X is a complex number such that A= N-T € [or A= X-T €
I, then A € p(T, X). All scalar values of A not in p(7, X)) comprise
the spectrum of T. The further classification of (T, X) gives rise
to the fine spectrum of T. That is, o(7T, X) can be divided into the
subsets Iyo(T,X), I30(T,X), I1,0(T,X), I130(T,X), [110(T,X),
I11,0(T, X), I1130(T,X). For example, if A = A — T is in a given
state, 1115 (say), then we write A € I11,0(T, X).

THEOREM 1.1. L = lim (n+ 1)a, = 0 then my(R,,c) = S. (see
[6])

THEOREM 1.2. If 0 < L < oo then SN(2L,00) C mo(R4,c) € SN
[2L,00) . (see [7])

THEOREM 1.3. If L = 0 then mo(R},c* = (') = SU{0} . (see [6])

THEOREM 1.4. If 0 < L < oo then
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L L
{)\ A=< —} U S U {L} Cm(R:,e=0)

2
c({r:r-f1=L}-@)us
(see [7)

THEOREM 1.5. If L =0, then o(M,¢cp) = S U {0}. (see [6])
THEOREM 1.6. If 0 < L < oo then

L L
O(Ra,c):{/\ :|/\—§|§ E} U S.

(see [7])

THEOREM 1.7. If L =0, then 0 € I1Iy0(M,c)and A € I1130(M,c)
for A\ =a,, (m=0,1,2,...). (see [6])

2. Main Results

Leibovitz showed in [2] that R, is a bounded operator on ciff { (n+
1)a, } converges. Also, it is shown that if R, : ¢ — ¢ and L =
lim (n + 1)a,, then R € B(¢') and

= (o n) 0
6].

THEOREM 2.1. Let 0 < L < oco. If A ¢ S and aL > 1, then
A€ Ilo(Rg,c).

Proof. Since A ¢ S, T\ = A\ — R, is a normal matrix. Hence the
matrix 75 ! exists. Since

A—L 0 0 0 0
0 A — ag —a —a9 —az ...
0 A—a; —az —as ... (2)

Ty = 0
0 0 0 /\—(12 —Aas
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Tix = (M — R:)x = 6 implies the following;

(/\ - L)(L’(] =
(/\ — (10)1'1 — Z a;Tir1 = 0
i=1
(/\ — al)xg - Z a;Tiv1 = 0
=2
Thus zog = 0 and
n—2 a
T, = 1— Mg
kH@( R

for n > 1. Since aL > 1, x € (*[6, Lemma 2.3]. Therefore it is not
required Vn, z, = 0 for z = (0,2, %9, 23,...) € ¢*. That is to say
x = 0 does not need to be satisfied; i.e. Ty = A — R} is not one-to-
one. Thus T\ does not have a dense range [1, I1.3.7.Theorem]. That

is; R(Ty) # c. So that, Ty € I11.

At this point, we have to show that T} ! is continuous; i.e. R(T}) =
¢* = (' [1, 11.3.11 Theorem).

Let y = (y,) € ¢*. If Tfz = y and Iz = (z,) € (', then the
following are satisfied.

()\ - L).flfo = Yo,
A= @net)Tn — > Gpo1Tp = Yn
k=n-+1

for n > 1. If we choose 1 = 0, then we have
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1 a a
T3 = X [?/3 - lez - (1 - Xl)%
. 1 a9 aq a9 as
Ty = X [94 - Xy?’ - X( - X)?JQ - (1 - X)(l - X)yl

This defines the matrix transformation

1
400 = Y7 aor = 0; a1, = 0,5 apo =0
1
CL21:—X
1n72 '
anl__xl (1__J>an>2
7=1
Ay
Upnpn—-1 = — )\27 > 2
1 n-2 a;
J
p1 = ﬁak_ln(l—x),1<k<n—l
=k
1
Apn = 7
A
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ane =0, k>n> 1. 9)
From (3), we obtain
D Jan |=O(1). (10)
n=0

Using [[7], Lemma 4.1.3 | where aL > 1, from [5] and [6] we have

Z|an1‘ :|a11‘+|a21|+2|an1|
n=0 n=3
eSS | (EE (1)
=3

J:1

From (6), (7), (8) and (9) we have

Dolam | =law |+ arsan |+ Y [aw]
n=0 n=k+2
akl ag—1
— 1_
|/\| |)\|QZ H|
—k+2
n—2 . T
| 1— ]
1 k-1 — j=0 A
= " 2 1+Zk—1
|/\| |)\| n=k+2 1 a;
[T11-%1
L J=0 i
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1 apy | > 1
< — 1 k— 1)L _—
STt Z(n—w]

| n=k+2

1 ap—1 | ©  dr
B S g

DYREE N R A Ay

1 ak_l_ 1ol (12>
< 1+ (k—1)*
S T E TRV

1 1 r klfaL
< _ k _kaL—l—
>~ |/\|+|>\|2 _ak 1+ Qp—1 ol — 1

1 Qpe—1 O(l)
< — |1 = 01
ST TATezon) = W

for k > 2.

Therefore, with (10), (11) and (12), we have sup;, Y, | an, |< 00;
ie. A € B({'). This allows us to write Ay = x € ¢!, so that T} is
shown to be onto. As a result, T\ € I11; and X € [1110(R,,¢). O

THEOREM 2.2. Let 0 < L < oo. If A ¢ S, A\ # L and oL = 1, then
A € I1,0(R,,c).

Proof. Since \ ¢ S, then the matrix that corresponds to operator
Ty = M — R, is a normal matrix. So, T\ = A — R, is one-to-one; i.e.
=M —R, € (1) OIT/\:)\I—RGE(Q).

Consider the adjoint operator 75 = A\ — R}. Then if 75z = 0, then

zo = 0 and
n—2

k=0
for n > 1. Since aL = 1, we have

= (0,11,79,73,...) EL' = 11=0 = x=0.

Hence T is one-to-one. Using this result and [[1], I11.3.7 Theorem|]
we have proved that Ty has dense range;i.e. R(T)) = ¢ and therefore
we conclude that T\ € II. Since A € o(R,,c), we get that A\ €
I1,0(R,,c);i.e. X € [I0(R,,c). O
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THEOREM 2.3. Let 0 < L < oo. If for all A # a,,, then L €
I11,0(R,,c).

Proof. Since Ty, = LI — R, is a triangular matrix, therefore 77, is
one-to-one. Now consider the adjoint operator 7} = LI — R;. Since
Tfey = 0 (where e; = (1,0,0,...)), T} is not one-to-one. From [I,
I1.3.7 Theorem|, T}, does not have a dense range;i.e. R(T)) # c;i.e.
T;, € II1. On the other hand, since T} is one-to-one we have L €
I11,0(R,,c) UIIlo(R,,c). In order to show that T, ' is continuous
we must have that from [[1] ,IL.3.11 Theorem] that R(T}) = ¢* = ¢*.

Let e; = (1,0,0,...) € /! then we conclude that there is no x € ¢!
such that 77z = e;. Asaresult 77, does not have a bounded inverse;i.e.
L e I110(R,,c). O

THEOREM 2.4. Let 0 < L < oco. If A = a,, # L for at least
onem (m = 0,1,...), then A\ = a,, € [1I30(R,,c) for L < an;
A=ay, € [o(R,,c) for L > a,,.

Proof. Then the system (a,,I — R,)x = 0 implies x;, = 0 for k =
0,1,...,m—1, and for n > 1

am+na”m_1
Xz = X
men (am - aern)(am - aernfl) o (am - am+1) "

Am+n

am

= Tm, n=1,2,...

<1 — M) <1 _ am+n—l) L (am+1>

a
Let by, := ™ and
am

1
lim (n +1)b, = lim (n + 1) = — lim (n + 1)aym4n = — =: Lo.

n—o00 n—0o00 Aoy, Ay, P00

Hence

aern
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by
li m+n li m
e = A o (1 — by ) (L —b1)
1
= lim (n + Db

ot ) =)L — by (L)

x L lim ! x
= Tym— 11 m
amn—>oo(n—|—1>(1—bn)<1—bn_1)...(1—b1)
L G-BO-d. - g

1m T,
amnﬁoo(l — bn)(l — bnfl) . (1 — b1>

Lo (-1
pRr | v

1 L
Lot O im ~ b1y, (k+ Db (k + 1)by

and Dy, 1=

1 — by, (1 —be)(k+1)
Then we have

(1—=bp)(k+1)

In(Cy) = In(1 4 Dy) = Dy, — 1D} + O(D}). Hence

Case I. If L > a,, (i.e, Ly > 1), then Zln(l + Dy) = +o0. This
k

implies lim z,, = 4+00. Then z € ¢ iff z,,, = 0 (i.e, x = 6. Then

n—oo

anl — R, is a triangle and is therefore injective, so that a,,I — R, €

(1) U (2).

Case IL If L < ay, (i.e; Ly < 1), then Y "In(1+ Dy) = —o0. So
k

lim z, = 0. Hence (a,,I — R,)™" does not exist;i.e. a,,] — R, € (3).

n—oo
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Now we consider the operator a,, — R : {* — (' and let x € ('
Therefore we have

[e.9]

(aml — R))x = ((am — L)xo, (ay, — ag)xy — Zaixi+1,
i=1

(A — ar)zy — E Aiigs s (Qm = Q1) T — g QiLit1,
i=2 i=m
o0 o0
- E Q;Tiq1, (Clm - am+1)9€m+2 - E A;Ti41,
o0
(Am = my2)Tmys — E AT 1y--- ) -
i=m-+3

It is seen from the image sequence that, non zero sequences are mapped
into the zero sequence.

For if 0 = x40, Timys, - . ., then the contditions
(Clm - L)IO =0
m

(am — ag)z1 — Zaz‘l‘iﬂ =0

=1

m

(CLm — a,l)ZEg - Zaixiﬂ =0

=2
(am - am—2)xm—1 — Om—-1Tm — AmTm41 = 0
(am - CLm—l)xm — AmImy1 = 0

together with xo = 0 will ensure that the sequence x will be mapped
into zero. Therefore, we obtain an equation for a homogeneous system
of m unknown with m equations and {z1,xs,...,Zy41} with m + 1
unknown which obviously is the solution of this homogeneous system.
We shall turn back to case II. Since a,,I — R, € (3) and a,,] — R} €
(3), according to diagram a,,I — R, € I11I3i.e, a,, € [1130(R,,c).
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Now we can consider the case I. It is Clearly seen that a,,] — R, €
III. It remains to show that a,,/ — R} is surjective. Let us take any
y € (. If (a,,] — Rz =y, then

(am - L)Jfo =Y
(o]
(am - CLO)SUl - E Q;Tiv1 = Y1
1=1
o
(am - a1)$2 - E Q;Tir1 = Y2
i=2
o0
(am - am—l)xm - E AQ;Tir1 = YUm
i=m
o0
- E Q;Tir1 = Ym+1
1=m-+1
o

(am — am+1)xm+2 - E AiTi+1 = Ym+2

i=m-+2
By choosing x,,,1 = 0, we can solve for zi,x,,...,x, in terms of
Y1,Y2, - - -, Yme1- LThe remaining equations can be written in the from

x = By, where the nonzero entries of B are

1
bm+2,m+1 = -
Am
bm+n,m+n =—n > 2
m
Am4n—1
bm—i—n,m—i—n—l =TT 5 3<n<o0 (13)
U
a n—2
m+j—1 .
Dmtnmtj = ——neii1 H(am —Umik), 2<j<n—2, n>4
Am
k=j
1 n—2

bm+n,m+1 =
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Hence if Ratio test and raabe test are used respectively, we have

Z | Dmtnmtt | =] bms2mest | +Z | Omnme1 |
n=2 n=3
1 o0 1 n—2
:a_+zan_1 H|am—am+j|20(1)
moop=3 M =1
and for 7 > 1,

[e9)
Z | bm—l—n,m—l—j |
n=j

[e.e]

=| bmtjm+j | + | bmtjarmes | Z | btnmetj |

n=j+2
1 a 00 a n—2
_ mj—1 m+j—1 -
- CL_ + a2 § n—j+1 H | A, — 4k ’ - O(l)
m Mmoo op—jpo dm T

Therefore, we have sup;, > | bur |< 00; i.e. B € B(¢'). This allows
us to write By = z € ', so that Ty is shown to be onto. As result,
T\ € 111, for A > a,, and a,, € [II,0(R,,¢). O

THEOREM 2.5. Let R, be a regular transformation.

(a) If Reaw > 0 and lim(ax + (1 — a)R,x) = t, then limz = ¢,

(b) Let Reaw < 0 and « # ay,, (m = 0, , 1, 2, ...). If lim(ax +
(1 — a)R,z) =t, then limx =t or x is unbounded,

(¢) If Reaw = 0 (v # 0), then the operator af + (1 — a)R, sums
bounded divergent sequences.

Proof. From [[2], Propesition 3.3.(a)] R, Rhaly matrix is regular iff
R, is asymptotic to Cesaro matrix. (i.e. lim,(n + 1)a, = 1)
(i) Let Reaw > 0 and lim(ax + (1 — a)R,z) = t. Since

al +(1—a)R, =1
for a =1, limxz = t. Lets suppose that a # 1. Using the second part
—1
of Theorem 1.4 \ := Ll € p(Ry,c) <= 870 21 <= Rea > 0.
o — o
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From [[4],Lemma 5.2] lim(ax + (1 —a)R,z) = t which requires lim z =
t.

(ii) Let Rea < 0 and o # a,,, m = 0, , 1, 2, .... In this case
1 a—1 1 a—1
Rea < 0 <— — = such that Re— = Re < 1. Hence
A «Q A «Q

from Theorem 2.1., A = a 7€ IITo(M,c) Since [af + (1 —a)R,] ™
o —

exists and is bounded, R(al + (1 — a)R,) is closed in ¢. Then using
[5], al + (1 — a)R, sums no bounded divergent sequence. Hence if
lim ax+(1—a)R,x = t, which requires other x € ¢ or z is not bounded.
Since if « € ¢, then lim R,z = lim z, therefore lim oz + (1 — a)R,z =
alimz + (1 — a)lim R,z So, limx =t or o ¢ (.

(iii) Let Rea = 0 for o # 0. Hence

a—l_

ReazO(z)Rel:Re = 1.

A o
By Theorem 2.2., we have \ := Ll € I1,0(R4,¢). So [al + (1 —
a j—

a)R,]™! exist but not continuous and Re(al + (1 — a)R,) # ¢ but
Re(al + (1 —a)R,) = c. That is, Re(al + (1 — a)R,) is not closed
in ¢. Hence, Using [[5], Theorem 17|, al + (1 — o) R, sums a bounded
divergent sequence. O]
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