Tetanus-induced LTD of Developing MNTB-LSO Synapses in Rat is Dependent on Postsynaptic $Ca^{2+}$

  • Ahn, Seung-Cheol (Department of Physiology, College of Medicine, Dankook University)
  • Published : 2007.06.30

Abstract

Because synaptic refinement of medial nucleus of trapezoid body (MNTB) - lateral superior olive (LSO) synapses is most active during the first postnatal week and the long term depression (LTD) has been suggested as one of its mechanisms, LTD of MNTB-LSO synapses was investigated in neonatal rat brain stem slices with the whole cell voltage clamp technique. In $Mg^{2+}$ free condition, tetanus (10 stimuli at 10 Hz for 2 min) in the current clamp mode induced a robust LTD of isolated D, L-APV-sensitive postsynaptic currents (PSCs) for more than 30 min ($n=6,\;2.4{\pm}0.4%$ of the control), while isolated CNQX-sensitive PSCs were not suppressed ($n=6,\;95.3{\pm}1.6%$). Tetanus also elicited similar LTD in the isolated GABAergic/glycinergic PSCs ($n=6,\;3.6{\pm}0.5%$) and mixed PSCs (GABAergic/glycinergic/glutamatergic) ($n=4,\;2.2{\pm}0.7%$). However, such a strong LTD was not observed in the mixed PSCs when 10 mM EGTA was added in the internal solution (n=10), indicating that postsynaptic $Ca^{2+}$ rise is needed for the strong LTD. This robust LTD might contribute to the active synaptic refinement occurring during the first postnatal week.

Keywords

References

  1. Boudreau JC, Tsuchitani C. Binaural interaction in the cat superior olive S segment. J Neurophysiol 31: 442-454, 1968 https://doi.org/10.1152/jn.1968.31.3.442
  2. Caillard O, Ben-Ari Y, Gaiarsa JL. Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J Physiol 518(Pt 1): 109-119, 1999 https://doi.org/10.1111/j.1469-7793.1999.0109r.x
  3. Caspary DM, Finlayson PG. Superior olivary complex: functional neuropharmacology of the principal cell types. In:Altschuler RA, Bobbin RP, Clopton BM, Hoffman DW ed, Neurobiology of Hearing: the Central Auditory System. Raven Press, New York, p 141-161, 1991
  4. Chevaleyre V, Castillo PE. Heterosynaptic LTD of hippocampal GABAergic synapses:a novel role of endocannabinoids in regulating excitability. Neuron 38: 461-472, 2003 https://doi.org/10.1016/S0896-6273(03)00235-6
  5. Christie BR, Eliot LS, Ito K, Miyakawa H, Johnston D. Different $Ca^{2+}$ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced $Ca^{2+}$ influx. J Neurophysiol 73: 2553-2557, 1995 https://doi.org/10.1152/jn.1995.73.6.2553
  6. Ehrlich I, Lohrke S, Friauf E. Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurons is due to agedependent Cl- regulation. J Physiol 520: 121-137, 1999 https://doi.org/10.1111/j.1469-7793.1999.00121.x
  7. Ene FA, Kullmann PH, Gillespie DC, Kandler K. Glutamatergic calcium responses in the developing lateral superior olive: receptor types and their specific activation by synaptic activity patterns. J Neurophysiol 90: 2581-2591, 2003 https://doi.org/10.1152/jn.00238.2003
  8. Fagni L, Chavis P, Ango F, Bockaert J. Complex interactions between mGluRs, intracellular $Ca^{2+}$ stores and ion channels in neurons. Trends Neurosci 23: 80-88, 2000 https://doi.org/10.1016/S0166-2236(99)01492-7
  9. Fischer W, Franke H, Scheibler P, Allgaier C, Illes P. AMPAinduced $Ca(^{2+})$ influx in cultured rat cortical nonpyramidal neurones: pharmacological characterization using fura-2 microfluorimetry. Eur J Pharmacol 438: 53-62, 2002 https://doi.org/10.1016/S0014-2999(02)01296-7
  10. Gerdeman GL, Ronesi J, Lovinger DM. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5: 446-451, 2002 https://doi.org/10.1038/nn832
  11. Gillespie DC, Kim G, Kandler K. Inhibitory synapses in the developing auditory system are glutamatergic. Nat Neurosci 8: 332-338, 2005 https://doi.org/10.1038/nn1397
  12. Hoffman AF, Oz M, Caulder T, Lupica CR. Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J Neurosci 23: 4815-4820, 2003 https://doi.org/10.1523/JNEUROSCI.23-12-04815.2003
  13. Kim G, Kandler K. Elimination and strengthening of glycinergic/ GABAergic connections during tonotopic map formation. Nat Neurosci 6: 282-290, 2003 https://doi.org/10.1038/nn1015
  14. Korada S, Schwartz IR. Development of GABA, glycine, and their receptors in the auditory brainstem of gerbil:a light and electron microscopic study. J Comp Neurol 409: 664-681, 1999 https://doi.org/10.1002/(SICI)1096-9861(19990712)409:4<664::AID-CNE10>3.0.CO;2-S
  15. Kotak VC, Sanes DH. Developmental influence of glycinergic transmission: regulation of NMDA receptor-mediated EPSPs. J Neurosci 16: 1836-1843, 1996 https://doi.org/10.1523/JNEUROSCI.16-05-01836.1996
  16. Kotak VC, Korada S, Schwartz IR, Sanes DH. A developmental shift from GABAergic to glycinergic transmission in the central auditory system. J Neurosci 18: 4646-4655, 1998 https://doi.org/10.1523/JNEUROSCI.18-12-04646.1998
  17. Kotak VC, Sanes DH. Long-lasting inhibitory synaptic depression is age- and calcium-dependent. J Neurosci 20:5820-5826, 2000 https://doi.org/10.1523/JNEUROSCI.20-15-05820.2000
  18. Kotak VC, DiMattina C, Sanes DH. GABA(B) and Trk receptor signaling mediates long-lasting inhibitory synaptic depression. J Neurophysiol 86: 536-540, 2001 https://doi.org/10.1152/jn.2001.86.1.536
  19. Kotak VC, Sanes DH. Postsynaptic kinase signaling underlies inhibitory synaptic plasticity in the lateral superior olive. J Neurobiol 53: 36-43, 2002 https://doi.org/10.1002/neu.10107
  20. Kullmann PH, Ene FA, Kandler K. Glycinergic and GABAergic calcium responses in the developing lateral superior olive. Eur J Neurosci 15: 1093-1104, 2002 https://doi.org/10.1046/j.1460-9568.2002.01946.x
  21. Oda Y, Charpier S, Murayama Y, Suma C, Korn H. Long-term potentiation of glycinergic inhibitory synaptic transmission. J Neurophysiol 74: 1056-1074, 1995 https://doi.org/10.1152/jn.1995.74.3.1056
  22. Oertel D. The role of timing in the brain stem auditory nuclei of vertebrates. Annu Rev Physiol 61: 497-519, 1999 https://doi.org/10.1146/annurev.physiol.61.1.497
  23. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418: 530-534, 2002 https://doi.org/10.1038/nature00839
  24. Morishita W, Sastry BR. Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J Neurophysiol 76: 59-68, 1996 https://doi.org/10.1152/jn.1996.76.1.59
  25. N'Gouemo P, Rittenhouse AR. Biophysical and pharmacological characterization of voltage-sensitive calcium currents in neonatal rat inferior colliculus neurons. Neuroscience 96: 753-765, 2000 https://doi.org/10.1016/S0306-4522(00)00006-3
  26. Normann C, Peckys D, Schulze CH, Walden J, Jonas P, Bischofberger J. Associative long-term depression in the hippocampus is dependent on postsynaptic N-type $Ca^{2+}$ channels. J Neurosci 20: 8290-8297, 2000 https://doi.org/10.1523/JNEUROSCI.20-22-08290.2000
  27. Rae MG, Irving AJ. Both mGluR1 and mGluR5 mediate $Ca^{2+}$ release and inward currents in hippocampal CA1 pyramidal neurons. Neuropharmacology 46: 1057-1069, 2004 https://doi.org/10.1016/j.neuropharm.2004.02.002
  28. Ronesi J, Lovinger DM. Induction of striatal long-term synaptic depression by moderate frequency activation of cortical afferents in rat. J Physiol 562(Pt 1): 245-256, 2005 https://doi.org/10.1113/jphysiol.2004.068460
  29. Sjostrom PJ, Turrigiano GG, Nelson SB. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39: 641-654, 2003 https://doi.org/10.1016/S0896-6273(03)00476-8
  30. Wang J, Liu S, Haditsch U, Tu W, Cochrane K, Ahmadian G, Tran L, Paw J, Wang Y, Mansuy I, Salter MM, Lu YM. Interaction of calcineurin and type-A GABA receptor gamma 2 subunits produces long-term depression at CA1 inhibitory synapses. J Neurosci 23: 826-836, 2003 https://doi.org/10.1523/JNEUROSCI.23-03-00826.2003
  31. Waters DJ, Allen TG. $Ca^{2+}$-permeable non-NMDA glutamate receptors in rat magnocellular basal forebrain neurones. J Physiol 508(Pt 2): 453-469, 1998 https://doi.org/10.1111/j.1469-7793.1998.453bq.x