Influence of Nicorandil on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Koh, Young-Youp (Department of Internal Medicine (Cardiology), College of Medicine, Chosun University) ;
  • Lee, Eun-Sook (Department of Pharmacology, College of Medicine, Chosun University) ;
  • No, Hae-Jeong (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Woo, Seong-Chang (Departments of Anesthesiology and Pain Medicine) ;
  • Chung, Joong-Wha (Department of Internal Medicine (Cardiology), College of Medicine, Chosun University) ;
  • Seoh, Yoo-Seung (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
  • Published : 2007.06.30

Abstract

The present study was attempted to investigate the effect of nicorandil, which is an ATP-sensitive potassium ($K_{ATP}$) channel opener, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of nicorandil ($0.3{\sim}3.0mM$) into an adrenal vein for 90 min produced relatively dose-and time-dependent inhibition in CA secretion evoked by ACh (5.32 mM), high $k^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, $100{\mu}M$ for 2 min), McN-A-343 (a selective muscarinic $M_1$ receptor agonist, $100{\mu}M$ for 4 min), Bay-K-8644 (an activator of L-type dihydropyridine $Ca^{2+}$ channels, $10{\mu}M$ for 4 min) and cyclopiazonic acid (an activator of cytoplasmic $Ca^{2+}$-ATPase, $10{\mu}M$ for 4 min). In adrenal glands simultaneously preloaded with nicorandil (1.0 mM) and glibenclamide (a nonspecific $K_{ATP}$-channel blocker, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of nicorandil-treatment only. Taken together, the present study demonstrates that nicorandil inhibits the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this inhibitory effect of nicorandil may be mediated by inhibiting both $Ca^{2+}$ influx and the $Ca^{2+}$ release from intracellular store through activation of $K_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that nicorandil-sensitive $K_{ATP}$ channels may play an inhibitory role in the regulation of the rat adrenomedullary CA secretion.

Keywords

References

  1. Akai K, Wang Y, Sato K, Sekiguchi N, Sugimura A, Kumagai T, Komaru T, Kanatsuka H, Shirato K. Vasodilatory effect of nicorandil on coronary arterial microvessels: its dependency on vessel size and the involvement of the ATP-sensitive potassium channels. J Cardiovasc Pharmacol 26: 541- 547, 1995 https://doi.org/10.1097/00005344-199510000-00006
  2. Akaike A, Mine Y, Sasa M, Takaori S. Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J Pharmacol Expt Ther 255: 333- 339, 1990
  3. Akaike A, Mine Y, Sasa M, Takaori S. Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J Pharmacol Expt Ther 255: 333- 339, 1990
  4. Asano M, Masuzawa-Ito K, Matsuda T. Vasodilating actions of cromakalim in resting and contracting states of carotid arteries from spontaneously hypertensive rats. European J Pharmacol 263: 121- 131, 1994 https://doi.org/10.1016/0014-2999(94)90532-0
  5. Ashcroft FM. Adenosine 5'-triphosphate-sensitive potassium channels. Annu Rev Neurosci 11: 763- 770, 1988
  6. Ashford MLJ, Sturgess NC, Trout NJ, Gardner NJ, Hales CN. Adenosine 5'-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch 412: 297- 304, 1988 https://doi.org/10.1007/BF00582512
  7. Burgoyne RD. Mechanism of secretion from adrenal chromaffin cells. Biochem Biophys Acta 779: 201- 216, 1984 https://doi.org/10.1016/0304-4157(84)90009-1
  8. Cena V, Nicolas GP, Sanchez-Garcia P, Kirpekar SM, Garcia AG. Pharmacological dissection of receptor-associated and voltagesensitive ionic channels involved in catecholamine release. Neuroscience 10: 1455- 1462, 1983 https://doi.org/10.1016/0306-4522(83)90126-4
  9. Challiss RAJ, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 56:1083- 1086, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  10. Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cytosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett 247: 429- 434, 1989 https://doi.org/10.1016/0014-5793(89)81385-7
  11. Cook NS. The pharmacology of potassium channel and their therapeutic potential. Trends Pharmacol Sci 9: 21- 28, 1988 https://doi.org/10.1016/0165-6147(88)90238-6
  12. Corcoran JJ, Kirshner N. Inhibition of calcium uptake, sodium uptake, and catecholamine secretion by methoxyverapamil (D600) in primary cultures of adrenal medulla cells. J Neurochem 40: 1106- 1109, 1983 https://doi.org/10.1111/j.1471-4159.1983.tb08099.x
  13. Davie CS, Kubo M, Standen NB. Potassium channel activation and relaxation by nicorandil in rat small mesenteric arteries. Br J Pharmacol 125: 1715- 1725, 1998 https://doi.org/10.1038/sj.bjp.0702232
  14. Edwards G, Duty S, Trezise DJ, Weston AH. Effects of potassium- channel modulators on the cardiovascular system. In: Weston AH, Hamilton TC ed, Potassium Channel Modulators: Phamacological, Molecular and Clinical Aspects. Oxford Blackwell Science, p 369- 463, 1992
  15. Endoh M, Taira N. Relationship between relaxation and cyclic GMP formation caused by nicorandil in canine mesenteric arteries. Naunyn-Schmiedeberg's Arch Pharmacol 322: 319, 1983
  16. Finta EP, Harms L, Sevick J, Fischer HD, Illes P. Effects of potassium channel openers and their antagonists on rat locus coerulus neurones. Br J Pharmacol 109: 308- 315, 1993 https://doi.org/10.1111/j.1476-5381.1993.tb13571.x
  17. Frampton J, Buckley MM, Fitton A. Nicorandil. A review of its pharmacology and therapeutic effects in angina pectoris. Drugs 44: 625- 655, 1992 https://doi.org/10.2165/00003495-199244040-00008
  18. Furukawa K, Itoh I, Kajiwara M, Kitamura K, Suzuki H, Ito Y, Kuriyama H. Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells and on adrenergic transmission in guinea-pig and porcine mesenteric arteries. J Pharmacol Exp Ther 218: 260, 1981
  19. Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309: 69- 71, 1984 https://doi.org/10.1038/309069a0
  20. Goeger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem Pharmacol 38: 3995-4003, 1989 https://doi.org/10.1016/0006-2952(89)90679-5
  21. Goldschmidt M, Landzberg BR, Frishman WH. Nicorandil. A potassium channel opening drug for treatment of ischemic heart disease. J Clin Pharmacol 36: 559- 572, 1996 https://doi.org/10.1002/j.1552-4604.1996.tb04219.x
  22. Habermann E. Bee and wasp venoms. Science 177: 314- 322, 1972 https://doi.org/10.1126/science.177.4046.314
  23. Hamilton T, Weston A. Cromakalim, nicorandil and pinacidil:novel drugs which open potassium channels in smooth muscle. Gen Pharmacol 20: 1- 9, 1989 https://doi.org/10.1016/0306-3623(89)90052-9
  24. Hammer R, Giachetti A. Muscarinic receptor subtypes:M1 and M2 biochemical and functional characterization. Life Sci 31: 2992-2998, 1982
  25. Heldman E, Levine M, Rabeh L, Pollard HB. Barium ions enter chromaffin cells via voltage-dependent calcium channels and induce secretion by a mechanism independent of calcium. J Biol Chem 264: 7914- 7920, 1989
  26. Holzmann S. cGMP as a possible mediator of coronary arterial relaxation by nicorandil (SG-75). J Cardiovasc Pharmacol 5:364-370, 1983 https://doi.org/10.1097/00005344-198305000-00004
  27. Holzmann S, Kukovetz WR, Braida C, Poch G. Pharmacological interaction experiments differentiate between glibenclamidesensitive potassium channels and cyclic GMP as components of vasodilation by nicorandil. Eur J Pharmacol 215: 1- 7, 1992 https://doi.org/10.1016/0014-2999(92)90600-9
  28. Ilno M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol 94: 363- 383, 1989 https://doi.org/10.1085/jgp.94.2.363
  29. Kawai Y, Hayashi Y, Ito I, Kamibayashi T, Takada K, Kagawa K, Yamatodani A, Mashimo T. Nicorandil prevents epinephrineinduced arrhythmias in halothane-anesthetized rats by nitric oxide-dependent mechanism.Naunyn Schmiedebergs Arch Pharmacol 366: 522- 527, 2002 https://doi.org/10.1007/s00210-002-0644-9
  30. Kukovetz WR, Holzmann S, Braida C, Poch G. Dual mechanism of the relaxing effect of nicorandil by stimulation of cGMP formation and by hyperpolarisation. J Cardiovasc Pharmacol 17: 627- 633, 1991 https://doi.org/10.1097/00005344-199104000-00016
  31. Ladona MG, Aunis D, Gandia AG, Garcia AG. Dihydropyridine modulation of the chromaffin cell secretory response. J Neurochemstry 48: 483- 490, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb04118.x
  32. Lara B, Zapater P, Montiel C, Teresa de la Fuente M, Martinez- Sierra R, Ballesta JJ, Gandia L, Garcia AG. Density of apamin-sensitive $Ca^{2+}$ -dependent $K^+$ channels in bovine chromaffin cells: Relevance to secretion. Biochem Pharmacol 49: 1459- 1468, 1995 https://doi.org/10.1016/0006-2952(94)00524-P
  33. Lim DY, Hwang DH. Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J Pharmacol 27: 53- 67, 1991
  34. Lim DY, Kim CD, Ahn KW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 15: 115- 125, 1992 https://doi.org/10.1007/BF02974085
  35. Lim DY, Park GH, Park SH. Inhibitory mechanism of pinacidil on catecholamine secretion from the rat perfused adrenal gland evoked by cholinergic stimulation and membrane depoialrization. J Auton Pharmacol 20: 123- 132, 2000 https://doi.org/10.1046/j.1365-2680.2000.00171.x
  36. Marty A, Neher E. Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol (Lond.) 367: 117- 141, 1985 https://doi.org/10.1113/jphysiol.1985.sp015817
  37. Masuda Y, Yoshizumi M, Ishimura Y, Katoh I, Oka M. Effects of the potassium channel openers cromakalim and pinacidil on catecholamine secretion and calcium mobilization in cultured bovine adrenal chromaffin cells. Biochem Pharmacol 47: 1751-1758, 1994 https://doi.org/10.1016/0006-2952(94)90302-6
  38. Meisheri KD, Cipkus-Dubray LA, Hosner JM, Khan S. Nicorandil- induced vasorelaxation: functional evidence for K+ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J Cardiovasc Pharmacol 17: 903, 1991
  39. Montiel C, Lopez MG, Sanchez-Garcia P, Maroto R, Zapater P, Garcia AG. Contribution of SK and BK channels in the control of catecholamine release by electrical stimulation of the cat adrenal gland. J Physiol (Lond.) 486: 427- 437, 1995 https://doi.org/10.1113/jphysiol.1995.sp020823
  40. Montiel C, Lopez MG, Sanchez-Garcia P, Maroto R, Zapater P, Garcia AG. Contribution of SK and BK channels in the control of catecholamine release by electrical stimulation of the cat adrenal gland. J Physiol (Lond.) 486: 427- 437, 1995 https://doi.org/10.1113/jphysiol.1995.sp020823
  41. Nagayama T, Koshika T, Hisa H, Kimura T, Satoh S. Apaminsensitive SKCa channels modulate adrenal catecholamine release in anesthetized dogs. Eur J Pharmacol 327: 135- 141, 1997 https://doi.org/10.1016/S0014-2999(97)89652-5
  42. Nagayama T, Masada K, Yoshida M, Suzuki-Kusaba M, Hisa H, Kimura T, Satoh S. Role of $K^+$ channels in adrenal catecholamine secretion in anesthetized dogs. Am J Physiol Regulatory Integrative Comp Physiol 274: R1125- R1130, 1998
  43. Neely A, Lingle CJ. Effects of muscarine on single rat adrenal chromaffin cells. J Physiol (Lond) 453: 133- 166, 1992 https://doi.org/10.1113/jphysiol.1992.sp019221
  44. Oka M, Isosaki M, Yanagihara N. Isolated bovine adrenal medullary cells:studies on regulation of catecholamine synthesis and release. In: Usdin E, Kopin IJ, Brachas J ed, Catecholamines: Basic and Clinical frontiers. Pergamon Press, Oxford, p 70- 72, 1979
  45. Perez-Vizcaino F, Casis O, Rodriguez R, Comez LA, Garcia Rafanell J, Tamargo J. Effect of the novel potassium channel opener, UR-8225, on contractile responses in rat isolated smooth muscle. Br J Pharmacol 110: 1165- 1171, 1993 https://doi.org/10.1111/j.1476-5381.1993.tb13936.x
  46. Petersen OH, Maruyama Y. Calcium-activated potassium channels and their role in secretion. Nature 307: 693- 696, 1984 https://doi.org/10.1038/307693a0
  47. Pierrefiche O, Bischoff AM, Richter DW. ATP-sensitive $K^+$ channels are functional in expiratory neurones of normoxic cats. J Physiol (Lond) 494: 399- 409, 1996 https://doi.org/10.1113/jphysiol.1996.sp021501
  48. Quast U, Cook NS. Moving together: $K^+$ channel openers and ATP-sensitive $K^+$ channels. Trends Pharmacol Sci 10:431- 435, 1989 https://doi.org/10.1016/S0165-6147(89)80003-3
  49. Seidler NW, Jona I, Vegh N, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$ -ATPase of sarcoplasimc reticulum. J Biol Chem 264: 17816- 17823, 1989
  50. Shono M, Houchi H, Oka M, Nakaya Y. Effects of Nitroprusside and Nicorandil on Catecholamine Secretion and Calcium Mobilization in Cultured Bovine Adrenal Chromaffin Cells. J Cardivasc Pharmacol 30: 419- 423, 1997 https://doi.org/10.1097/00005344-199710000-00003
  51. Standen NB, Quatly JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Hyperpolarizing vasodilators activate ATP-sensitive $K^+$ channels in arterial smooth muscle. Science 245: 177- 1780, 1989 https://doi.org/10.1126/science.2501869
  52. Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$ -pump, reduces $Ca^{2+}$ -dependent $K^+$ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107: 134- 140, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  53. Tallarida RJ, Murray RB. Manual of Pharmacologic Calculation with Computer Programs. 2nd ed. Speringer-Verlag, New York, p 132, 1987
  54. Terbush DR, Holz RW. Barium and calcium stimulate secretion from digitonin-permeabilized bovine adrenal chromaffin cells by similar pathways. J Neurochem 58: 680- 687, 1992 https://doi.org/10.1111/j.1471-4159.1992.tb09771.x
  55. Uceda G, Artalejo AR, de la Fuente MT, Lopez MG, Albillos A, Michelena P, Garcia AG, Montiel C. Modulation by L-type $Ca^{2+}$ channels and apamin-sensitive $K^+$ channels of muscarinic responses in cat chromaffin cells. Am J Physiol 266 (Cell Physiol 35): C1432- C1439, 1994
  56. Uceda G, Artalejo AR, Lopez MG, Abad F, Neher E, Garcia AG. $Ca^{2+}$ -activated $K^+$ channels modulate muscarinic secretion in cat chromaffin cells. J Physiol 454: 213- 230, 1992 https://doi.org/10.1113/jphysiol.1992.sp019261
  57. Uyama Y, Imaizumi Y, Watanabe M. Effects of cyclopiazonic acid, a novel $Ca^{2+}$ -ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br J Pharmacol 106: 208- 214, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14316.x
  58. Wada A, Kobayashi H, Arita M, Yanagihara N, Izumi F. Potassium channels in cultured bovine adrenal medullary cells: effects of high K, veratridine and carbachol on 86rubidium efflux. Neuroscience 22: 1085- 1092, 1987 https://doi.org/10.1016/0306-4522(87)92983-6
  59. Wada A, Urabe M, Yuhi T, Yamamoto R, Yanagita T, Niina H, Kobayashi H. Large- and small-conductance $Ca^{2+}$ -activated $K^+$ channels: their role in the nicotinic receptor-mediated catecholamine secretion in bovine adrenal medulla. Naunyn Schmiedebergs Arch Pharmacol 352: 545- 549, 1995
  60. Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 313: 463- 480, 1981 https://doi.org/10.1113/jphysiol.1981.sp013676
  61. Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 313: 463- 480, 1981 https://doi.org/10.1113/jphysiol.1981.sp013676
  62. Watson S, Abbott A. Receptor Nomenclature Supplement. Trends Pharmacol Sci (Suppl):31- 33, 1991
  63. Weston AH, Southerton JS, Bray KM, Newgreen DT, Taylor SG. The mode of action of pinacidil and its analogs P1060 and P1368:Results of studies in rat blood vessels. J Cardiovasc Pharmacol 12 (Suppl): S10- S16, 1988
  64. Wu CW, Leung CK, Yung WH. Sulphonylureas reverse hypoxia induced $K^+$ conductance increase in substantia nigra pars reticulata neurones. Neuro Report 7: 2513- 2517, 1996