Effects of Sesim-tang Hot Water Extract & Ultra-fine Powder on the Alzheimer's Disease Model

세심탕(洗心湯) 열수추출물, 초미세분말제형이 Alzheimer's Disease 병태 모델에 미치는 영향

  • Kim, Hyun-Soo (Department of Oriental Neuropsychiatry, College of Oriental Medicine, Daejeon University) ;
  • Lee, Sang-Yong (Department of Oriental Neuropsychiatry, College of Oriental Medicine, Daejeon University) ;
  • Jung, In-Chul (Department of Oriental Neuropsychiatry, College of Oriental Medicine, Daejeon University)
  • 김현수 (대전대학교 한의과대학 신경정신과학교실) ;
  • 이상룡 (대전대학교 한의과대학 신경정신과학교실) ;
  • 정인철 (대전대학교 한의과대학 신경정신과학교실)
  • Published : 2007.06.25

Abstract

This experiment was designed to investigate the effect of the SST hot water extract & ultra-fine Powder on Alzheimer's Disease Model Induced by ${\beta}$A. The effects of the SST hot water extract on expression of IL-1${\beta}$, IL-6, TNF-${\alpha}$, NOS-II, COX-2 mRNA and production of IL-l${\beta}$, IL-6, TNF-${\alpha}$, NO in BV2 microglial cell line treated by lipopolysacchaide(LPS). The effects of the SST hot water extract & ultra-fine powder on (1) the behavior (2) expression of IL-1${\beta}$, TNF-${\alpha}$, MDA, (3) Glucose, AChE in serum (4) the infarction area of the hippocampus, and brain tissue injury in Alzheimer's diseased mice induced with ${\beta}$A were investigated. The SST hot water extract suppressed the expression of IL-1${\beta}$, IL-6 and TNF-a mRNA ${\alpha}$in BV2 microglia cell line treated with LPS. The SST hot water extract suppressed the production of IL-1${\beta}$, IL-6, TNF-${\alpha}$, NO in BV2 microglial cell line treated with LPS. The SST hot water extract & ultra-fine powder a significant inhibitory effect on the memory deficit was shown for the mice with Alzheimer's disease induced by ${\beta}$A in the Morris water maze experiment, which measured stop-through latency. The SST ultra-fine powder suppressed the expression of TNF-a protein significantly in the microglial cell of mice with Alzheimer's disease induced by ${\beta}$A. The SST hot water extract & ultra-fine powder reduced the MDA and suppressed the over-expression of CD68, CD11b in the mice with Alzheimer's disease induced by ${\beta}$A. The SST hot water extract & ultra-fine powder decreased AChE significantly in the serum of the mice with Alzheimer's disease induced by ${\beta}$A. The SST hot water extract & ultra-fine powder reduced infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}$A. The SST hot water extract & ultra-fine powder reduced the tau protein, GFAP, and presenilin1, 2 of hippocampus in the mice with Alzheimer's disease induced by ${\beta}$A. These results suggest that the SST hot water extract & ultra-fine powder may be effective for the prevention and treatment of A1zheimer's disease. Investigation into the clinical use of the SST hot water extract & ultra-fine powder for Alzheimer's disease is suggested for future research.

Keywords

References

  1. 대한한방신경정신과학회편. 한방신경정신의학. 서울, 집문당, pp 311-316, 2005
  2. 민성길. 최신정신의학. 일조각, pp 189-200, 611-612, 2004
  3. 이근후 외. 최신임상정신의학. 서울, 하나의학사, pp 138, 216-228, 1988
  4. 張介賓. 張氏景岳全書. 서울, 翰成社, pp 610-611, 1978
  5. 錢鏡湖. 辨證奇問全書. 台北, 甘地出版社, pp 222-225, 233- 235, 1990
  6. 洪元植. 精校黃帝內經素問. 서울, 東洋醫學硏究院, pp 37, 124, 196, 229, 217-218, p.229, 1985
  7. 陳士澤. 國譯石室秘錄. 서울, 書苑堂, p 102, 1984
  8. 黃大東 외. 實用中醫內科學. 上海, 上海科學技術出版社, pp 378-381, 1989
  9. 陳輝 외. 實用中醫腦病學. 北京, 學苑出版社, pp 242-251, 1993
  10. 金聖賢 외. 洗心湯이 腦組織의 酸化作用에 미치는 影響. 동의신경정신과학회지 8(2):39-50, 1997
  11. 최현정, 방나영, 송보완, 김남재, 류봉하. 한약제형 선호도에 관한 설문조사. 경희의학, 20(1):356-367, 2004
  12. Song, L.L., Du, G.J., Fan, B.Y., Zhang, D.L. Study on pharmacology of ultra-fine particles compound Rehmannia. Zhongguo Zhong Yao Za Zhi 27(6):436-439, 2002
  13. 최강욱, 이상룡, 정인철. 聰明湯과 木槿皮聰明湯 열수추출물, 초미세분말제형이 microglia 및 기억력 감퇴 병태모델에 미치는 영향. 동의생리병리학회지 20(5):1200-1210, 2006
  14. Skehan, P., Storeng, R., Scudiero, D., Monk, A., McMahon, J., Visca, D., Warren, J.T., Kennedy, S., Boyd, M.R. New colorimetric cytotoxicity assay for anticancer drug screening. Journal of the National Cancer Institute 82(13):1107-1112, 1990 https://doi.org/10.1093/jnci/82.13.1107
  15. Abu-Absi, N.R., Zamamiri, A., Kacmar, J., Balogh, S.J., Srienc, F. Automated flow cytometry for acquisition of time-dependent population data. Cytometry 51A(2):87-96, 2003 https://doi.org/10.1002/cyto.a.10016
  16. Michael, L,H., Entman, M.L., Hartley, C.J., Youker, K.A., Zhu, J., Hall, S.R., Hawkins, H.K., Berens, K., Ballantyne, C.M. Myocardial ischemia and reperfusion ; a murine model. Am J Physiol. 269: 2147-2154, 1995
  17. Cacquevel, M., Lebeurrier, N., Cheenne, S., Vivien, D. Cytokines in neuroinflammation and Alzheimer's disease. Current Drug Targets 5(6):529-534, 2004 https://doi.org/10.2174/1389450043345308
  18. Li, W.Y., Butler, J.P., Hale, J.E., McClure, D.B., Little, S.P., Czilli, D.L., Simmons, L.K. Suppression of an amyloid beta peptide-mediated calcium channel response by a secreted beta-amyloid precursor protein. Neuroscience 95(1):1-4, 2000 https://doi.org/10.1016/S0306-4522(99)00479-0
  19. Mattson, M.P., Guo, Z.H., Geiger, J.D. Secreted form of amyloid precursor protein enhances basal glucose and glutamate transport and protects against oxidative impairment of glucose and glutamate transport in synaptosomes by a cyclic GMP-mediated mechanism. J Neurochem 73(2):532-537, 1999 https://doi.org/10.1046/j.1471-4159.1999.0730532.x
  20. Chun, W., Johnson, G.V. The role of tau phosphorylation and cleavage in neuronal cell death. Front Biosci. 12: 733-756, 2007 https://doi.org/10.2741/2097
  21. Kasa, P., Papp, H., Torok, I. Donepezil dose-dependently inhibits acetylcholinesterase activity in various areas and in the presynaptic cholinergic and the postsynaptic cholinoceptive enzyme-positive structures in the human and rat brain. Neuroscience 101(1):89-100, 2000 https://doi.org/10.1016/S0306-4522(00)00335-3
  22. Trabace, L., Cassano, T., Steardo, L., Pietra, C., Villetti, G., Kendrick, K.M., Cuomo, V. Biochemical and neurobehavioral profile of CHF2819, a novel, orally active acetylcholinesterase inhibitor for Alzheimer's disease. J Pharmacol Exp Ther. 294(1):187-194, 2000
  23. Wu, D.C., Xiao, X.Q., Ng, A.K., Chen, P.M., Chung, W., Lee, N.T., Carlier, P.R., Pang, Y.P., Yu, A.C., Han, Y.F. Protection against ischemic injury in primary cultured mouse astrocytes by bis(7)-tacrine, a novel acetylcholinesterase inhibitor. Neurosci Lett. 288(2):95-98, 2000 https://doi.org/10.1016/S0304-3940(00)01198-8
  24. Pyo, H., Joe, E., Jung, S., Lee, S.H., Jou, I. Gangliosides activate cultured rat brain microglia. J Biol Chem. 274(49):34584-34589, 1999 https://doi.org/10.1074/jbc.274.49.34584
  25. Simmons, M.L., Murphy, S. Induction of nitric oxide synthase in glial cells. J Neurochem 59(3):897-905, 1992 https://doi.org/10.1111/j.1471-4159.1992.tb08328.x
  26. Stephen, L.Y., Loyd, H.B., June, K.A., Joyce, M.A., Michael, D.D., Paula, B.E., Anthony, M.P., Piorkowski, Kurt, R.B. Amyloid $\beta$ and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J Neurochem 74(3):1017-1025, 2000 https://doi.org/10.1046/j.1471-4159.2000.0741017.x
  27. Fukuyama, R., Izumoto, T., Fushiki, S. The cerebrospinal fluid level of glial fibrillary acidic protein is increased in cerebrospinal fluid from Alzheimer's disease patients and correlates with severity of dementia. Eur Neurol 46(1):35-38, 2001 https://doi.org/10.1159/000050753
  28. 전국한의과대학 본초학교수공저. 本草學. 서울, 영림사, p 302, 331, 347, 370, 448, 493, 523, 531, 540, 1999
  29. Lee, S.C., Liu, W., Dickson, D.W., Brosnan, C.F., Berman, J.W. Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. The Journal of Immunology 150(7):2659-2667, 1993
  30. Nick, J.A., Avdi, N.J., Gerwins, P., Johnson, G.L., Worthen, G.S. Activation of p38 mitogen-activated protein kinase in human neutrophils by lipopolysaccharide. J Immunol. 156(12):4867-4875, 1996
  31. Woo, M.S. et al. Selective modulation of lipopolysaccharide- stimulated cytokine expression and mitogen-activated protein kinase pathways by dibutyryl-cAMP in BV2 microglial cells. Molecular Brain Research 113(1-2):86-96, 2003 https://doi.org/10.1016/S0169-328X(03)00095-0
  32. Marcheselli, V.L., Bazan, N.G. Sustained induction of prostaglandin endoperoxide-2 by seizure in hippocampus. The Journal of biological chemistry 271: 24794-24799, 1997
  33. Pasinatti, G.M., Alsen, P.S. Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer's disease brain. Neuroscience 87(2):319-324, 1998 https://doi.org/10.1016/S0306-4522(98)00218-8
  34. Yen, G.C., Lai, H.H. et al. Nitric oxide-scavenging and antioxidant effects of Uraria crinita root. Food Chemistry 74: 471-478, 2001 https://doi.org/10.1016/S0308-8146(01)00165-0
  35. Fernandez-Vizarra, P. et al. Expression of nitric oxide system in clinically evaluated cases of Alzheimer's disease. Neurobiology of Disease 15(2):287-305, 2004 https://doi.org/10.1016/j.nbd.2003.10.010
  36. Mates, J.M., Perez-Gomez, C. et al. Antioxidant enzymes and human disease. Clinical Biochemistry 32: 595, 1999
  37. Yamazaki, M., Matsuoka, N., Kuratani, K., Ohkubo, Y., Yamaguchi, I. FR121196, a potential antidementia drug, ameliorates the impaired memory of rat in the Morris water maze. J Phamacol Exp Ther. 272(1):256-263, 1995
  38. Nakaya, H., Tohse, N., & Nanno, M. Electrophysiological derngements induced by lipid peroxidation in cardiac tissue. Am J Physiol. 253: 1089-1097, 1987
  39. Holley, A.E. and Cheeseman, K.H. Measuring free radical reaction in vivo. Bri. Med. Bull. 49(3):494-505, 1993 https://doi.org/10.1093/oxfordjournals.bmb.a072626