도인(桃仁)이 중추신경 재생 촉진에 미치는 영향

Effect of the Water Extract of Persicae Semen on Promotion of Axon Regeneration

  • 신진봉 (원광대학교 한의과대학 내과학교실) ;
  • 문구 (원광대학교 한의과대학 내과학교실) ;
  • 이종덕 (원광대학교 의과대학 영상의학과학교실) ;
  • 원진희 (원광대학교 한의과대학 내과학교실) ;
  • 이재원 (원광대학교 한의과대학 내과학교실)
  • Shin, Jin-Bong (Department of Oriental Internal Medicine, College of Oriental Medicine, Wonkwang University) ;
  • Moon, Goo (Department of Oriental Internal Medicine, College of Oriental Medicine, Wonkwang University) ;
  • Lee, Jong-Deuk (Department of Diagnostic Radiology, College of Medicine, Wonkwang University) ;
  • Won, Jin-Hee (Department of Oriental Internal Medicine, College of Oriental Medicine, Wonkwang University) ;
  • Lee, Jae-Won (Department of Oriental Internal Medicine, College of Oriental Medicine, Wonkwang University)
  • 발행 : 2007.02.25

초록

Following CNS injury, inhibitory influences at the site of axonal damage occur. Glial cells become reactive and form a glial scar, gliosis. Astrocyte-rich gliosis relates with up-regulation of GFAP and CD81, and eventually becomes physical and mechanical barrier to axonal regeneration. It is postulated that the astrocytic reaction is absent, regeneration of axons can occur. And it was reported that treatment with anti CD81 antibodies enhanced functional recovery in the rat with spinal cord injury. So in this current study, the author investigated the effect of the water extract of Persicae Semen on the regulation of GFAP and CD81 that increase when gliosis occurs. Persicae Semen decreased the expression of GFAP and CD81 in astrocyte cell by ELISA method. Persicae Semen decreased the RNA expression of CD81 and GFAP. The proteins that separate in whole cell were analaysed by western blot, and the expression of GFAP and CD81 was decreased. In vivo, rats brains were peformed cortical stab wound, the water extracts of Persicae Semen were injected for 7 days, 30 days. As a result, GFAP and CD81 expression were decreased in immunohistochemistry. These findings demonstrate that Persicae Semen decreases GFAP and CD81 expression. Accordingly, Persicae Semen could be a candidate for promotion of axon regeneration after CNS injury.

키워드

참고문헌

  1. Miros Pekny, Michael Nilsson. Astrocyte activation and reactive gliosis. GLIA. 50:427-434, 2005 https://doi.org/10.1002/glia.20207
  2. Samuel David. Axon growth promoting and inhibitory molecules involved in regeneration in the adult mammalian central nervous system. Mental retardation and develomental disabilities research review. 4:171-178, 1998 https://doi.org/10.1002/(SICI)1098-2779(1998)4:3<171::AID-MRDD4>3.0.CO;2-R
  3. Ferraro, G.B., Alabed, Y.Z., Fournier, A.E. Molecular targets to promote central nervous system regeneration. Curr Neurovasc Res. 1:61-75, 2004 https://doi.org/10.2174/1567202043480251
  4. Fawcett, J.W., Asher, R.A. The glial scar and CNS repair. Brain Res Bull. 49(6):377-391, 1999 https://doi.org/10.1016/S0361-9230(99)00072-6
  5. Schwab, M.E., Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Psysiol Rev. 76(2):319-370, 1996
  6. 이지윤. 손상된 흰쥐 척수에 이식한 태아 척수조직이 미치는 영향. 가톨릭대학교 대학원, 석사학위 논문, 2002
  7. 권오규. 척수 손상 후 운동기능의 회복 및 아교섬유성 산 단백질의 변화. 건국대학교 대학원, 석사학위 논문, 2003
  8. Dijkstra, S., Duis, S., Pans, I.M., Lankhorst, A.J., Hamers, F.P., Bar, P.R. et al. Intraspinal administration of an antibody CD81 enhances functional recovery and tissue sparing after experimental spinal cord injury. Exp neurol. 202(1):57-66, 2006 https://doi.org/10.1016/j.expneurol.2006.05.011
  9. Peduzzi, J.D., Grayson, T.B., Fischer, F.R., Geisert, E.E. Jr. The expression of TAPA Correlates with the reactive response of Astrocytes in the Developing Rat CNS. Exp neurol. 160(2):460-468, 1999 https://doi.org/10.1006/exnr.1999.7234
  10. Song, B.K., Levy, S., Geisert, E.E. Jr. Increased density of retinal pigment epithelium in CD81 -/- mice. J Cell Biochem, 92(6):1160-1170, 2004 https://doi.org/10.1002/jcb.20145
  11. Song, B.K., Geisert, G.R., Vazquez-Chona, F., Geisert, E.E. Jr. Temporal regulation of CD81 following retinal injury in the rat. Neurosci Lett, 338(1):29-32, 2003 https://doi.org/10.1016/S0304-3940(02)01364-2
  12. Bethea, J.R., Nagashima, H., Acosta, M.C., Briceno, C., Gomez, F., Marcillo, A.E., Loor, K., Green, J., Dietrich, W.D. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma. 16(10):851-863, 1999 https://doi.org/10.1089/neu.1999.16.851
  13. Guth, L., Albuquerque, E.X., Deshpande, S.S., Barrett, C.P., Donati, E.J., Warnick, J.E. Ineffectiveness of enzyme therapy on regeneration in the transected spinal cord of the rat. J Neurosurg. 52(1):73-86, 1980 https://doi.org/10.3171/jns.1980.52.1.0073
  14. Puchala, E., Windle, W.F. The possibility of structural and functional restitution after spinal cord injury. A review Exp Neurol. 55(1):1-42, 1977
  15. Gimenez y Ribotta, M., Rajaofetra, N., Morin-Richaud, C., et al. Oxysterol (7beta-hydroxycholesteryl-3-oleate) promotes serotonergic reinnervation in the lesioned rat spinal cord by reducing glial reaction. J Neurosci Res. 41(1):79-95, 1995
  16. Zhang, S.X., Geddes, J.W., Owens, J.L., Holmberg, E.G. X-irradiation reduces lesion scarring at the contusion site of adult rat spinal cord. Histol Histopathol. 20(2):519-530, 2005
  17. Menet, V., Gimenez, Y., Ribotta, M., Sandillon, F., Privat, A. GFAP null astrocytes are a favorable substrate for neuronal survival and neurite growth. Glia. 31(3):267-272, 2000 https://doi.org/10.1002/1098-1136(200009)31:3<267::AID-GLIA80>3.0.CO;2-N
  18. 신민교. 임상본초학. 서울, 영림사, pp 464-465, 1997
  19. 송경송. 도인과 도인기원식물의 외부 및 내부형태. 우석대학교 대학원, 석사학위 논문, 2001
  20. 안덕균. 원색 한국 본초도감. 서울, 교학사, p 568, 2003
  21. 吳普. 神農本草經. 醫道韓國, p下品 32, 1976
  22. 元秦喜 譯. 정교주역 동의보감. 제 5권, 서울, 신우문화사, p 259, 2005
  23. 戴新民. 中國藥材學. 啓業書局, pp 987-988, 1974
  24. 李時珍. 本草綱目. 宏業書局, 제 29권, pp 46-47, 1975
  25. 박병희 譯. 임상응용 상한론해설. 의방출판사, pp 117-238, 2004
  26. 焉哉乎也 譯. 금궤요략강화. 의방출판사, pp 382-398, 2003
  27. Kim, M.S., So, H.S., Park, J.S. et al. Hwansodan protects PC12 cells against serum-deprivation-induced apoptosis via a mechanism involving Ras and mitogen-activated protein (MAP)kinase pathway, Gen Pharmacol. 34(4):227-235, 2000 https://doi.org/10.1016/S0306-3623(00)00065-3
  28. Kim, M.S., Lee, J., Lee, K.M. et al. sunghyangjungisan protects PC12 cells against neurotoxicity elicited by withdrawal of tropic support via CRE activation. Immunoopharmacol Immunotoxicol. 24(1):97-117, 2000
  29. 류지용. 십전대보탕이 신경교세포의 산화적 손상에 미치는 영향. 원광대학교 대학원, 박사학위논문, 2002
  30. 조현경. 자하거 및 수종 한약재가 척수 신경세포의 축색돌기 재생에 미치는 효과. 대전대학교 대학원, 박사학위 논문, 2004
  31. 공대종. 도인추출액의 아세틸콜린 분해요소 억제작용에 대한 연구. 동국대학교 대학원, 박사학위 논문, 2002
  32. 윤인한. 도인이 고콜레스테롤 식이에 의한 가토의 죽상동맥경화에 미치는 영향. 대구한의대 대학원, 박사학위논문, 1996
  33. 신경민, 박영미, 김인태, 홍선표, 홍정표, 이경태. Amygdalin의 Murine Macrophage Raw 264.7세포에서 in vitro 항염효과. 생약학회지 34(3):223-227
  34. 최문범, 김선희. 도인이 가토의 고지혈증에 미치는 영향. 대한본초학회지 10(1):1-11, 1995
  35. 김상우. 도인, 홍화가 임신에 미치는 영향. 경희대학교대학원, 석사학위논문, 1992
  36. 황문제. 도인 추출액의 콜린분해효소 억제작용에 대한 연구. 동국대학교 대학원, 박사학위논문, 2001
  37. 문연자. 백서배양 Type-1 및 Type-2 별아교세포의 탐식 능력에 관한 연구. 전남대학교 대학원, 박사학위 논문
  38. Alka A. Vyas, Ola Blixt, James C. Paulson. Potent glycan inhibitors of MAG enhance axon outgrowth in vitro. J Biol Chem. 280(16):16305-16310, 2005 https://doi.org/10.1074/jbc.M500250200
  39. Gao, Y. et al. Neurotrophins elevate camp toreach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase. J Neurosci. 23(37):11770-11777, 2003 https://doi.org/10.1523/JNEUROSCI.23-37-11770.2003
  40. Norenberg, M.D. Astrocytes response to CNS injury. J. Neuropathol, Exp Neurol. 53(3):213-220. 1994 https://doi.org/10.1097/00005072-199405000-00001
  41. 김규원, 박정애, 전형오. 성상세포의 새로운 역할. 서울대학교 약학대학, BRIC BioWave. 6(12), 2004
  42. Norenberg, M.D., Martinez-Hernandez, D. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161(2):303-310, 1979 https://doi.org/10.1016/0006-8993(79)90071-4
  43. O'Callaghan, J.P. Use of glial fibrillary acidic protein as a biomarker. Biomed Environ Sci. 4(1-2):197-206, 1991
  44. Eddelstone, M., Mucke, L. Molecular profiles of reactive astrocytes-implication for their role neurologic disease. Neurosci. 54(3):15-36, 1993 https://doi.org/10.1016/0306-4522(93)90380-X
  45. 황세진, 조원길, 권기환, 정호삼. 흰쥐 선조체의 일시적 국소뇌허혈 손상에서 GFAP 및 Vimentin의 면역반응변화에 관한 연구. 한양의대학술지 19(1):93-102, 1999
  46. Dahl, A., Bignami, A. Immunocytochemical and immuno- fluorescense studies of the glial fibrillary acidic protein. Brain Res. 61:279-293, 1973 https://doi.org/10.1016/0006-8993(73)90533-7
  47. Dahl, D., Bignami, A. Immunogenic properties of gliar fibrillary acidic protein. Brain Res. 116:150, 1976 https://doi.org/10.1016/0006-8993(76)90257-2
  48. Aquino, D.A., Hozumi, I., Chiu, F.C., Broanan, C.F. Quantative aspects of reactive gliosis. Neurochem Res. 17:877-885 https://doi.org/10.1007/BF00993263
  49. 송계용, 유재형, 지제근. 뇌의 교세포종양에서 Gliar Fibrillary Acidic Protein의 출현에 관한 고찰. 대한 신경외과학회지 13(2):227-231, 1984
  50. Dijkstra, S., Geisert, E.E. Jr, Dijkstra, C.D., Bar, P.R., Joosten, E.A. CD81 and microglial activation in vitro, proliferation, phagocytosis and nitric oxide production. J Neuroimmunol. 114:151-159, 2001 https://doi.org/10.1016/S0165-5728(01)00240-5
  51. Ling, E.A., Leblond, C.P. Investigation of glial cells in semithin sections. II. Variation with age in the numbers of the various glial cell types in rat cortex and corpus callosum. J Comp Neurol. 149:73-81, 1973 https://doi.org/10.1002/cne.901490105
  52. Parnavelas, J.G., Luder, R., Pollard, S.G., Sullivan, K., Lieberman, A.R. A qualitative and quantitative ultrastructural study of glial cells in the developing visual cortex of the rat. Philos Trans R Soc Lond B Biol Sci. 301: 55-84, 1983 https://doi.org/10.1098/rstb.1983.0022
  53. Geisert, E.E. Jr, Yang, L., Irwin, M.H. Astrocyte growth, reactivity, and the target of the antiproliferative antibody, TAPA. J Neurosci. 16: 5478-5487
  54. Dijkstra, S., Geisert, E.J., Gispen, W.H., Bar, P.R., Joosten, E.A. Up-regulation of CD81 by reactive microglia and astrocytes after spinal cord injury in the rat. J Comp Neurol. 428:266-277, 2000 https://doi.org/10.1002/1096-9861(20001211)428:2<266::AID-CNE6>3.0.CO;2-0
  55. Geisert, E.E. Jr, Abel, H.J., Fan, L., Geisert, G.R. Retinal pigment epithelium of the rat express CD81, the target of the anti-proliferative antibody(TAPA). Invest Ophthalmol Vis Sci. 43:274-280, 2002