Effects of Houttuyniae Herba Complex Prescription on Atopic Dermatitis in NC/Nga Mice

어성초복합방(魚腥草複合方)이 NC/Nga mouse 아토피 병태 모델의 관련 면역 세포 및 IgE 생성량에 미치는 영향

  • Hwang, Chang-Ha (Department of Pathology, College of Oriental Medicine, Daejeon University) ;
  • Jeong, Hye-Gwang (Department of Pharmacy, College of Phamacy, Research Center for Proteineous Materials, Chosun University) ;
  • Koo, Young-Sun (Department of internal Medicin, College of Oriental Medicine, Daejeon University) ;
  • Kim, Dong-Hee (Department of Pathology, College of Oriental Medicine, Daejeon University)
  • 황창하 (대전대학교 한의과대학 병리학교실) ;
  • 정혜광 (조선대학교 단백질소재연구센터) ;
  • 구영선 (대전대학교 한의과대학 내과학교실) ;
  • 김동희 (대전대학교 한의과대학 병리학교실)
  • Published : 2007.02.25

Abstract

To examine the effects of HHCP on atopic dermatitis and its various immunopathologic parameters was induced by DNCB in NC/Nga mice and the animals were orally administrated with HHCP. We summarized the results obtained from serum levels of IgE and the numbers of various immune cells as follow. HHCP has no cytotoxic effects at the range of concentration (1-400 ${\mu}g$/ml) on fibroblast isolated from lung of BALB/c mice. HHCP significantly lowered the serum levels of IgE compared with control at 16 and 20 week. HHCP significantly reduced the number of CD19$^+$ cell in spleen and DLN, as well as the number of B220$^+$ /IgE$^+$ cell in DLN compared with control. HHCP significantly reduced the number of ${\alpha}$${\beta}$ TCR$^+$ in spleen and DLN, the number of CD8$^+$ in spleen compared with control, and also significantly reduced the number of CD3$^+$, CCR3, CD3$^+$/CD69$^+$, CD3/ CCR3, CD4$^+$, CD3$^+$/ CD4$^+$/CD45$^+$ cell in DLN. HHCP increased the number of NK$^+$ cells in spleen compared with control, in contrast significantly decreased the number of CD11c$^+$/ Classll$^+$ cell and CD11b$^+$/Gr-1$^+$ cell in DLN. Taken together, these results suggested that HHCP has suppressive effects on atopic dermatitis through the inhibition of IgE production and modulation of immune cell population in NC/Nga mice.

Keywords

References

  1. Hanifin, J.M. Atopic dermatitis: broadening the perspective. J. Am. Acad. Dermatol. 51:23-24, 2004 https://doi.org/10.1016/j.jaad.2004.01.010
  2. Andrew, B., Sam, T.H., Mark, C.U. Allergic and immunologic disease of the skin. J. Allergy Clin. Immunol. 111:560-570, 2003 https://doi.org/10.1067/mai.2003.78
  3. 은희철. 피부면역학. 서울대학교출판부, 27-34, 1999
  4. 강석영. 알레르기 질환의 진단과 치료. 일조각, 241-252, 1999
  5. 정규만. 동의소아과학. 행림출판사, 567-568, 1985
  6. Lehtonen, E.P., Holmberg-Marttila, D., Kaila, M. Cumulative prevalence of atopic dermatitis and related skin symptoms in a well-baby clinic : a retrospective cohort study. Pediatr Allergy Immunol. 14(5):405-408, 2003 https://doi.org/10.1034/j.1399-3038.2003.00071.x
  7. Oh, J.W., Lim, K.W., Pyun, B.Y. Nationwide study for epidemiological change of atopic dermatitis in school and kindergarten aged children in Korea between 1995 and 2000. Pediatr Allergy Respir Dis (Korea) 3(2):121S, 2003
  8. McNally, N.J., Williams, H.C., Phillilps, D.R. Atopic eczerma and domestic water hardness. Lancet 352:527-531, 1998 https://doi.org/10.1016/S0140-6736(98)01402-0
  9. Yoon, S.P. The Environment and Lifestyles of Atopic dermatitis Patients. Korean J Dermatol 37(8):983-991, 1999
  10. Griffiths, P.D., Grundy, J.E. Molecular biology and immunology of cytomegalovirus. Biochem J. 241:313-324, 1987 https://doi.org/10.1042/bj2410313
  11. Hoglund, P. Induced peripheral regulatory T cells : the family grows larger. Eur J Immunol. 36:264-266, 2006 https://doi.org/10.1002/eji.200535797
  12. Kapsenberg, M.L., Wierenga, E.A., Stiekema, F.E.M. Th 1 lymphokine production profiles of nickel-spicific CD4+ lymphocyte clones from nickel contact allergic and non-allergic individuals. J Lnvest Dermatol 98:59-63, 1992 https://doi.org/10.1111/1523-1747.ep12494841
  13. Yazdanbakhsh, M., van den Biggelaar, A., Maizels, R.M. Th2 responses without atopy : immunoregulation in chronic helminth infections and reduced allergic disease. Trends Immunol. 22(7):372-377, 2001 https://doi.org/10.1016/S1471-4906(01)01958-5
  14. Holden, C.A. Atopic dermatitis-messenger, second messengers and cytokines. Clin Exp Dermatol 18:201-207, 1993 https://doi.org/10.1111/j.1365-2230.1993.tb02171.x
  15. Singh, V.K., Mehrotra, S., Agarwal, S.S. The paradigm of Th1 and Th2 Cytokines. Immunologic Res. 20:147-161, 1999 https://doi.org/10.1007/BF02786470
  16. Mark, R., Kilkenny, M., Plunkett, A., Merlin, K. The prevalence of common skin conditions in Australian scool student. Br. J. Dermatol. 140:468-473, 1999 https://doi.org/10.1046/j.1365-2133.1999.02711.x
  17. Hanifin, J.M. Immunologic aspects of atopic dermatitis. Dermatol. Clin. 8:747-750, 1990 https://doi.org/10.1016/S0733-8635(18)30461-3
  18. Graham-Brown, R.A. Therapeutics in atopic dermatitis. Adv Dermatol. 13:3-31, 1997
  19. D.S. Im. Linking Chinese medicine and G protein-coupled receptors, Trends in Pharmacol, Sci., 24:2, 2003 https://doi.org/10.1016/S0165-6147(02)00012-3
  20. Shiohara, T., Hayakawa, J., Mizukawa, Y. Animal models for atopic dermatitis: are they relevant to human disease? J Dermatol Sci. 36(1):1-9, 2004 https://doi.org/10.1016/j.jdermsci.2004.02.013
  21. 주인강. 임상경험집-피부외과. 인민위생출판사, 107, 2005
  22. 서인문 외. 중국피부병비방전서. 과학기술문헌출판사, 333, 2003
  23. 마소요. 실용중의피부병학. 상해중의약대학출판사, 231, 1999
  24. 남경중의학원편. 제병원후론교석 하책. 인민위생출판사, 1383, 1982
  25. 진실공. 외과정종. 인민위생출판사, 269, 1983
  26. 오겸 외. 의종금감 하. 대성문화사, 502, 1991
  27. 진가현. 가미패독산의 NC/Nga 생쥐에서 발생된 아토피 피부염 억제 작용. 대전대학교 학위논문, 2006
  28. 박숙자 외. 소풍산 추출물이 DNCB로 유발된 접촉성 피부염에 미치는 영향. 동의생리병리학회지, 20(3):623-628, 2006
  29. 민영규 외. 소풍산가미방과 외치방 병용이 NC/Nga 아토피 생쥐에 미치는 영향. 한방안이비인후피부과학회지, 18(1): 116-134, 2005
  30. 김기훈 외. 桑葉이 아토피 피부염에 미치는 영향. 慶熙醫學, 20(1), 2004
  31. 김만우. 淸心蓮子湯의 Th2 細胞 分化調節과 抗炎症 機轉을 통한 아토피 피부염 治療效果에 관한 硏究. 동국대학교 학위논문, 2006
  32. Hardy, R.R., Hayakawa, K. B cell development pathways. Annu Rev Immunol, 19:595-621, 2001 https://doi.org/10.1146/annurev.immunol.19.1.595
  33. Prussin, C., Foster, B. TCR V alpha 24 and V beta 11 coexpression defines a human NK1 T cell analog containing a unique Th0 subpopulation. J Immunol, 159:5862-5870, 1997
  34. Robinson, D.S., Hamid, Q., Ying, S., Tsicopoulos, A., Barkans, J., Bentley, A.M., Corrigan, C., Durham, S.R., Kay, A.B. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 326:298-304, 1992 https://doi.org/10.1056/NEJM199201303260504
  35. Watanabe, A., Mishima, H., Renzi, P.M., Xu, L.J., Hamid, Q., Martin, J.G. Transfer of allergic airway responses with antigen-primed CD4+ but not CD8+ T cells in brown Norway rats. J Clin Invest. 96:1303-1310, 1995 https://doi.org/10.1172/JCI118165
  36. Garcia, K.C., Degano, M., Speir, J.A., Wilson, I.A. Emerging principles for T cell receptor recognition of antigen in cellular immunity. Rev Immunogenet. 1(1):75-90, 1999
  37. MacDonald, H.R., Wilson, A. The role of the T-cell receptor (TCR) in alpha beta/gamma delta lineage commitment: clues from intracellular TCR staining. Immunol Rev. 165:87-94, 1998 https://doi.org/10.1111/j.1600-065X.1998.tb01232.x
  38. White, J.R., Imburgia, C., Dul, E., Appelbaum, E., O'Donnell, K., O'Shannessy, D.J., Brawner, M., Fornwald, J., Adamou, J., Elshourbagy, N.A., Kaiser, K., Foley, J.J., Schmidt, D.B., Johanson, K., Macphee, C., Moores, K., McNulty, D., Scott, G.F., Schleimer, R.P., Sarau, H.M. Cloning and functional characterization of a novel human CC chemokine that binds to the CCR3 receptor and activates human eosinophils. J Leukoc Biol. 62:667-675, 1997 https://doi.org/10.1002/jlb.62.5.667
  39. Erin, E.M., Williams, T.J., Barnes, P.J., Hansel, T.T. Eotaxin receptor (CCR3) antagonism in asthma and allergic disease. Curr Drug Targets Inflamm Allergy. 1:201-214, 2002 https://doi.org/10.2174/1568010023344715
  40. Laky, K., Fleischacker, C., Fowlkes, B.J. TCR and Notch signaling in CD4 and CD8 T-cell development. Immunol Rev. 209:274-283, 2006 https://doi.org/10.1111/j.0105-2896.2006.00358.x
  41. Kang, H.K., Datta, S.K. Regulatory T cells in lupus. Int Rev Immunol. 25 (1-2):5-25, 2006 https://doi.org/10.1080/08830180500544480
  42. Liu, H., Leung, B.P. CD4+CD25+ regulatory T cells in health and disease. Clin Exp Pharmacol Physiol. 33(5-6):519-524, 2006 https://doi.org/10.1111/j.1440-1681.2006.04401.x
  43. Bonifacino, J.S., Mercep, M., Sussman, J.J., Klausner, R.D., Ashwell, J.D. The T-cell antigen receptor: a complex signal-transducing molecule. Princess Takamatsu Symp. 19:87-104, 1988
  44. Bromberg, J.S. The biology of CD2: adhesion, transmembrane signal, and regulatory receptor of immunity. J Surg Res. 54:258-267, 1993 https://doi.org/10.1006/jsre.1993.1041
  45. Sancho, D., Gomez, M., Sanchez-Madrid, F. CD69 is an immunoregulatory molecule induced following activation. Trends Immunol. 26:136-140, 2005 https://doi.org/10.1016/j.it.2004.12.006
  46. Dorshkind, K., Narayanan, R., Landreth, K.S. Regulatory cells and cytokines involved in primary B lymphocyte production. Adv Exp Med Biol. 323:119-123, 1992
  47. Robertson, M.J., Ritz, J. Biology and clinical relevance of human natural killer cells. Blood. 76:2421-2438, 1990
  48. Driver, D.J., McHeyzer-Williams, L.J., Cool, M., Stetson, D.B., McHeyzer- Williams, M.G. Development and maintenance of a B220-memory B cell compartment. J Immunol. 167:1393-1405, 2001 https://doi.org/10.4049/jimmunol.167.3.1393
  49. Biron, C.A. Activation and function of natural killer cell responses during viral infections.Curr Opin Immunol. 9:24-34, 1997 https://doi.org/10.1016/S0952-7915(97)80155-0
  50. Walzer, T., Dalod, M., Vivier, E., Zitvogel, L. Natural killer cell-dendritic cell crosstalk in the initiation of immune responses. Expert Opin Biol Ther. 1:S49-59, 2005