Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats

  • Cho, Young-Eun (Department of Food Science and Nutrition, Andong National University) ;
  • Lomeda, Ria-Ann R. (Department of Food Science and Nutrition, Andong National University) ;
  • Ryu, Sang-Hoon (Central Laboratory Division for Instrumental Analysis) ;
  • Sohn, Ho-Yong (Department of Food Science and Nutrition, Andong National University) ;
  • Shin, Hong-In (School of Dentistry, Kyungbook National University) ;
  • Beattie, John H. (Cellular Integrity Division, Rowett Research Institute) ;
  • Kwun, In-Sook (Department of Food Science and Nutrition, Andong National University)
  • Published : 2007.06.20

Abstract

Zn is an essential nutrient that is required in humans and animals for many physiological functions, including immune and antioxidant function, growth, and reproduction. The present study evaluated whether Zn deficiency would negatively affect bone-related enzyme, ALP, and other bone-related minerals (Ca, P and Mg) in rats. Thirty Sprague Dawley rats were assigned to one of the three different Zn dietary groups, such as Zn adequate (ZA, 35 mg/kg), pair fed (PF, 35 mg/kg), Zn deficient (ZD, 1 mg/kg) diet, and fed for 10 weeks. Food intake and body weight were measured daily and weekly, respectively. ALP was measured by spectrophotometry and mineral contents were measured by inductively coupled plasma-mass, spectrophotometer (ICP-MS). Zn deficient rats showed decreased food intake and body weight compared with Zn adequate rats (p<0.05). Zn deficiency reduced ALP activity in blood (RBC, plasma) and the tissues (liver, kidney and small intestine) (p<0.05). Also, Zn deficiency reduced mineral concentrations in rat tissues (Ca for muscle and liver, and Mg for muscle and liver) (p<0.05). The study results imply the requirement of proper Zn nurture for maintaining bone growth and formation.

Keywords

References

  1. Bessey OA, Lowry OH & Brock MJ (1946). A method for the rapid determination of alkaline phosphatase with fibecubic millimetres of serum. J Biol Chem 164:321-329
  2. Bougle DL, Sabatier JP, Guaydier-Souquieres G, Guillon-Metz F, Laroche D, Jauzac P & Bureau F (2004). Zinc status and bone mineralization in adolescent girls. J Trace Elem Med Biol 18:17-21 https://doi.org/10.1016/j.jtemb.2004.03.001
  3. Chesters JK & Quarterman J (1970). Effects of zinc deficiency on food intake and feeding patterns of rats. Br J Nutr 24:1061-1069 https://doi.org/10.1079/BJN19700109
  4. Doherty CP, Crofton PM, Sarkar MA, Shakur MS, Wade JC, Kelnar CJ, Elmlinger MW, Ranke MB & Cutting WA (2002). Malnutrition, zinc supplenment and catch-up growth: changes in insulin-like growth factor I, its binding proteins, bone formation and collagen turnover. Clin Endocrinol 57:391-399 https://doi.org/10.1046/j.1365-2265.2002.01622.x
  5. Ducy P, Schinke T & Karsenty G (2000). The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501- 1504 https://doi.org/10.1126/science.289.5484.1501
  6. Eberle J, Schmidmayer S, Erben RG, Stangassinger M & Roth HP (1999). Skeletal effects of zinc deficiency in growing rats. J Trace Elem Med Biol 13:21-26 https://doi.org/10.1016/S0946-672X(99)80019-4
  7. Elmstachl S, Gullberg, Janzon L, Johnell O & Elmstahl B (1998). Increased incidence of fractures in middle-aged and elderly men with low intake of phosporus and zinc. Osteoporos Int 8:333-340 https://doi.org/10.1007/s001980050072
  8. Frost HM (1969). Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res 3:211-237 https://doi.org/10.1007/BF02058664
  9. Galdes A & Vallee BL (1983). Categories of zinc metalloenzymes. In: sigel H, editor. Metal ions in biological systems. p.1-47. Marcel Delkker, New York. USA
  10. Giugiano R & Millward DJ (1987). The effects of severe zinc deficiency on protein turnover in muscle and tymus. Br J Nutr 57:139-155 https://doi.org/10.1079/BJN19870017
  11. Hendy HA, Yousef MI & Naga NI (2001). Effect of dietary zinc deficiency on hematological and biochemical parameters and concentrations of zinc, copper, and iron in growing rats. Toxicology 167:163-170 https://doi.org/10.1016/S0300-483X(01)00373-0
  12. Holloway WR, Collier FM, Herbst RE, Hodge JM & Nicholson GC (1996). Osteoblast-mediated effects of zinc on isolated rat osteoclasts: inhibition of bone resort ion and enhancement of osteoclast number. Bone 12:137-142
  13. Hosea HJ, Taylor CG, Wood T, Mollard R & Weiler HA (2004). Zinc-deficient rats have more limited bone recovery during repletion than diet-restricted rats. Exp Biol Med 229:303-311 https://doi.org/10.1177/153537020422900404
  14. Hurley LS, Gordon PR, Keen CL & Merkhofer L (1982). Circadian variation in rat plasma zinc and rapid effect of dietary zinc deficiency. Proc Soc Exp Biol Med 170:48-52 https://doi.org/10.3181/00379727-170-41395
  15. Hyun TH, Barrett-connor E & Milne DB (2004). Zinc intakes and plasma concentrations in men with osteoporosis: the Rancho Bernardo Study. Am J Clin Nutr 80:715-721 https://doi.org/10.1093/ajcn/80.3.715
  16. Karsdal MA, Martin TJ, Bollerslev J, Christiansen C & Henriksen K (2007) Are nonresorbing osteoclasts sources of boe anabolic activity? J Bone Miner Res 22:487-494 https://doi.org/10.1359/jbmr.070109
  17. Koshihara M, Masuyama R & Suzuk K (2005) Reduction in dietary calcium/phosphorusratio reduces bone mass and strength in ovariectomized rats enhancing bone turnover. Biosci Biotechnol Biochem 69:1970-1973 https://doi.org/10.1271/bbb.69.1970
  18. Kwun IS, Cho YE, Lomeda RA, Kwon ST, Kim Y & Beattie JH (2007). Zinc deficiency in rats decreases leptin expression independently of food intake and corticotrophin-releasing hormone in relation to food intake. Brit J Nutr 97: [in press]
  19. Lee SL, Kwak EH, Kim Y, Choi JY, Kwon ST, Beattie JH & Kwun IS (2003). Leptin gene expression and serum leptin levels in zinc deficiency: Implications for appetite regulation in rats. J Med Food 6:281-290 https://doi.org/10.1089/109662003772519822
  20. Lowry OB, Rosenbrough MJ, Farr AL & Rebar RW (1951). Protein measurement with folin phenol reagent. J Biol Chem 255-260
  21. Moonga BS & Dempster DW (1995). Zinc is a potent inhibitor of osteoblastic bone resorption in vitro. J Bone Miner Res 10:453- 457 https://doi.org/10.1002/jbmr.5650100317
  22. National Research Council (1996). Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington DC. USA
  23. Dell BL, Becker JK, Emery MP & Browining JD (1989). Prodution and reversal of the neuromuscular pathology and related signs of zinc deficiency in guinea pigs. J Nutr 119:196-201 https://doi.org/10.1093/jn/119.2.196
  24. Ovesen J, Moller-Madsen B, Thomsen JS, Danscher G & Mosekilde L (2001). The positive effects of zinc on skeletal strength in growing rats. Bone 29:565-570 https://doi.org/10.1016/S8756-3282(01)00616-0
  25. Peretz A, Papadopoulos T, Willems D, Hotimsky A, Michiels N, Siderova V, Bergmann P & Neve J (2001) Zinc supplementation increases bone alkaline phosphatase in healthy men. J Trace Elem Med Biol 15:175-178 https://doi.org/10.1016/S0946-672X(01)80063-8
  26. Rossi L, Migliaccio S, Corsi A, Marzia M, Bianco P, Teti A, Gambelli L, Cianfarani S, Paoletti F & Branca F (2001). Reduced growth and skeletal changes in zinc-deficient growing rats and due to impaired growth plate activity and inanition. J Nutr 131:1142-1146
  27. Roth HP (2003). Development of Alimentary Zinc Deficiency in Growing Rats Is Retarded at Low Dietary Protein Levels. J Nutr 133:2394-2301 https://doi.org/10.1093/jn/133.7.2394
  28. Sambrook P & Cooper C (2006). Osteoporosis. Lancet 367:2010- 2018 https://doi.org/10.1016/S0140-6736(06)68891-0
  29. Scrimgeour AG, stahl CH, McClung JP, Marchitelli LJ & Young AJ (2007). Moderate zinc deficiency negatively affects biomechanical properties of rat tibiae independently of body composition. J Nutr Biochem 30;[Epub ahead of print]
  30. Seco C, Revilla M, Hernandez ER, Gervas J, Gonzalez-Riola J, Villa LF & Rico H (1998). Effects of zinc supplementation treadmill training exercise. J Bone Miner Res 13:508-512 https://doi.org/10.1359/jbmr.1998.13.3.508
  31. Shinozaki T & Pritzker KP (1996). Regulation of alkaline phosphatase: implications for calcium pyrophosphate dihydrate crystal dissolution and other alkaline phosphatase functions. Rheumatol 23:677-683
  32. Stein GS & Lian JB (1993). Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14:424-442 https://doi.org/10.1210/edrv-14-4-424
  33. Suwarnasarn A, Wallwork JC, Lykken GI, Low FN & Sandstead HH (1982). Epiphyseal plate development in the zinc-defecient rat. J Nutr 112:132-138
  34. Tang Z, Sahu SN, Khadeer MA, Bai G, Franklin RB & Gupta A (2006) Overexpression of the ZIP1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells. Bone 38:181- 198 https://doi.org/10.1016/j.bone.2005.08.010
  35. Underwood EJ (1981). The mineral nutrition of livestock. Commonwealth Agricultural Bureaux. Oxford: Oxford University Press
  36. Valle BL& Falchuk KH (1993). The biochemical basis of zinc physiology. Physiol Rev 73:79-118 https://doi.org/10.1152/physrev.1993.73.1.79
  37. Yamaguchi M, Oisgi H & Suketa Y (1988). Zinc stimulation of bone protein synthesis in tissue culture. Activation of aminoacyl-tRNA sythetase. Biochem Pharmacol 37:4075-4080 https://doi.org/10.1016/0006-2952(88)90098-6
  38. Yamaguchi M & Yamaguchi R (1986). Action of zinc on bone metabolism in rats. Increase in alkaline phosphatase activity and DNA content. Biochem Pharmacol 35:773-777 https://doi.org/10.1016/0006-2952(86)90245-5