QSAR on the Inhibition Acticity of Flavopiridol Analogues against Breast Cancer MCF-7

Flavopiridol 유도체에 의한 유방암 MCF-7 세포의 저해 활성에 관한 구조와 활성과의 관계

  • Soung, Min-Gyu (Department of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Joo, Sung-Mo (Department of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Song, Ah-Reum (Department of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Sung, Nack-Do (Department of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • 성민규 (충남대학교 농업생명과학대학, 응용생물화학부) ;
  • 주성모 (충남대학교 농업생명과학대학, 응용생물화학부) ;
  • 송아름 (충남대학교 농업생명과학대학, 응용생물화학부) ;
  • 성낙도 (충남대학교 농업생명과학대학, 응용생물화학부)
  • Published : 2007.09.30

Abstract

To search for a molecular design of a new breast cancerous inhibitory active compound, 2D-QSAR and HQSAR between the substituents of flavopiridol analogues as substrates and their breast cancerous inhibitory activities against MCF-7 cell were analyzed and discussed quantitatively. It was found that the dispersion with molecule and steric hindrance with substituents will have a tremendous impact on the inhibitory activities from the 2D-QSAR model (1). Also, MR constant is better than that of MS constant as animportant factor. The inhibitory activities from 2D-QSAR model (2) were dependent upon the optimum MR constant (MR = 126 $Cm^3/mol$). Optimized HQSAR model (V) exhibited the best predictability of the inhibitory activities based on the cross-validated $r^2_{cv}$($q^2$= 0.583) and non-cross-validated conventional coefficient ($r^2_{ncv}$= 0.982). From the contribution maps, the inhibitory activity by the imino group on $C_9$ atom was higher than that of the hydroxyl group of $C_8$ atom on the A ring in molecule. Therefore, we can confirm that the dispersion by substituents in molecule is the most important factor in inhibitory activities against MCF-7 cell.

새로운 유방암의 억제 물질을 탐색하고 설계하기 위하여 flavopiridol 유도체의 치환기($R_1{\sim}R_2$) 변화에 따른 유방암 유발세포 MCF-7의 저해활성에 관한 2D-QSAR 및 분자 홀로그래피적인 QSAR을 분석하였다. 2D-QSAR 모델(1)로부터 분자는 분산력으로 그리고 치환기는 입체장애를 유발하는 요인으로 작용하였으며 질량(MS)보다 굴절율(MR)상수가 저해활성에 크게 기여하였다. 그리고 2D-QSAR 모델(2)로부터는 MR상수의 적정값. $(MR)_{opt.}$= 126$Cm^3/mol$을 가지는 치환기의 저해활성이 가장 높을 것으로 예상되었다. 또한, 최적의 HQSAR 모델은 분자 조각의 크기($7{\sim}10$) 조건에서 예측성($q^2$= 0.583)과 상관성($r^2$= 0.982)이 매우 양호하였으며 기여도로부터 flavopiridol 분자내 A고리의 $C_8$원자에 결합된 수소원자나 hydroxyl-기보다 $C_9$원자 부분의 imino 골격이 저해활성에 기여하였다. 결과적으로 치환기들에 의한 분산력이 유방암 유발 세포 MCF-7의 저해활성에 크게 관여하는 주요인이었다.

Keywords

References

  1. Hunter, T. and Pines, J. (1994) Cyclins and cancer. II Cyclin D and CDK inhibitors come of age. Cell. 79, 573-582 https://doi.org/10.1016/0092-8674(94)90543-6
  2. Morgan, D. O. (1995) Principles of CDK regulations. Nat. 374, 131-134 https://doi.org/10.1038/374131a0
  3. Sherr. C. J. (1994) G1 phase progression: cyclin on cue. Cell. 79, 551-555 https://doi.org/10.1016/0092-8674(94)90540-1
  4. Reed, S. I., Bailly, E., Dulic, V., Hengst, L., Resnitzky, D. and Slingerland, J. (1994) G1 control in mammalian cells. J. Cell. Sci. 18(suppl.), 69-73
  5. Norbury, C. and Nurse, P. (1992) Animal cell cycles and their control. Ann. Rev. Biochem. 61, 441-470 https://doi.org/10.1146/annurev.bi.61.070192.002301
  6. Solomon, M. J. (1993) Activation of the various cyclin/CDC 2 proteins. Curr. Opin. Cell Biol. 5, 180-186 https://doi.org/10.1016/0955-0674(93)90100-5
  7. Jiang, M., Shao, Z. M., Wu, J., Lu, J. S., Yu, L. M., Yuan, J. D., Han, Q. X., Shen, Z. Z. and Fontana, J. A. (1997) p21waf1/cipl and mdm-2 expression to prognosis. Int. J. Cancer. 74, 529- 534 https://doi.org/10.1002/(SICI)1097-0215(19971021)74:5<529::AID-IJC9>3.0.CO;2-5
  8. Barbareschi, M., Caffo, O., Doglioni, C., Fina, P., Marchetti, A., Buttitta, F., Leek, R., Morelli, L., Leonardi, E., Bevilacqua, G., Dalla, P. P. and Harris, A. L. (1996) p21 WAF1 immunohistochemical expression in breast carcinoma: correlation with clinocopathologic data, aestrogen receptor status, MIBI expression, p53 genes and protein alterations and relapse-free survival. Br. J. Cancer 74, 208-215 https://doi.org/10.1038/bjc.1996.339
  9. Johnson, E. A., Davidson, A. G. and Hostetter, P. B. (1996) The expression of WAF1in node-negative infiltrating ductal breast carcinoma. Proc. Am. Assoc. Cancer Res. 37, 569
  10. Ahn, Y. M., Vogeti, L., Liu, C. J., Santhapuram, H. K. R., White, J. M. Vasandani, V. Mitscher, L. A., Lushington, G. H., Hanson, P. R., Powell, D. R., Himes, R. H., Roby, K. F., Ye, Q. and Georg, G. I. (2007) Design, synthesis, and antiproliferative and CDK2 -cyclin A inhibitory activity of novel flavopiridol analogues. Bioorg. Medi. Chem. 15, 702-713 https://doi.org/10.1016/j.bmc.2006.10.063
  11. Guo, J., Zhou, A. W., Fu, Y. C., Verma, U. N., Tripathy, D., Frenkel, E. P. and Becerra, C. R. (2006) Efficacy of sequential treatment of HCT116 colon cancer monolayers and xenografts with docetaxel, flavopiridol, and 5-flurouracil. Act. Phar. Sin. 27, 1375-1381 https://doi.org/10.1111/j.1745-7254.2006.00421.x
  12. Harris M., Piskorska-Pliszczynska J., Zacharewski T., Romkes M. and Safe S. (1989) Structure-dependent induction of aryl hydrocarbon hydroxylase in human breast cancer cell lines and charaterization of the Ah receptor. Cancer Res. 49, 4531-4535
  13. Ivy, S. P., Tulpule, A., Fairchild, C. R., Averbuch, S. D., Myers, C. E., Nebert, D. W., Baird, W. M. and Cowan, K. H. (1988) Altered regulation of P-450IA1 expression in a multidrug resistant MCF-7 human breast cancer cell lines. J. Biol. Chem. 263, 19119-19125
  14. Chen, W. F., Huang, M. H., Tzang, C. H., Yang, M. and Wong, M. S. (2003) Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1638, 187-196 https://doi.org/10.1016/S0925-4439(03)00082-6
  15. Kubinyi, H. (1993) In Hansch Analysis and Relates Approaches. VCH. Weinheim, Chap. 4
  16. Sung, N. D. (2002) Development of new agrochemicals by quantitative structure-activity relationship (QSAR) methodology. II. The linear free energy relationship (LFER) and descriptors. Korean J. Pestic. Sci. 6, 231-243
  17. Heritage, H. H. and Zacher, H. (1999) Molecular Hologram QSAR, In Rational Drug Design; Novel Methodology and Prractical Applications. (Parrill, A. L. and Reddy, M. R. Ed.), ACS Symposium Series 719, American Chemical Society, Washington, D.C., Ch. 4
  18. Chen, W. F., Huang, M. H., Tzang, C. H., Yang, M. and Wong, M. S. (2003) Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1638, 187-196 https://doi.org/10.1016/S0925-4439(03)00082-6
  19. TSAR (Ver. 3.3) (2000) Proprietary Software, Oxford Molecular Ltd
  20. Tripos, Sybyl (2006) Molecular Modeling and QSAR software on CD-Rom (Ver. 7.3), Triopos Associates, Inc., Suite 303, St. Louis, MO
  21. Tipker, J. and Verloop, A. (1984) In The chemistry of Excitation at Interfaces. Washington, DC. p. 279
  22. Broka, J. B. and Randie, M. (1996) Application of String Comparsion Techniques in QSAR Studies. J. Com. Chem. 7, 176-188
  23. Heritage, T. W. and Lowis, D. R. (1999) Molecular hologram QSAR. In Rational drug design: Novel Methodology and Practical Applications (ed. Parrill, A. L. and M. R. Reddy), ACS Symposium Series 719, ACS. Washington, DC. Ch. 4
  24. Tong, W., Lowis, D. R., Perkins, R., Chen, Y., Welsh, W. J., Goddette, D. W., Heritage, T. W. and Sheehan, D. M. (1998) Exaluation of quantitative structure activity relationship methods for large-scale prediction of chemicals binding to the estrogen receptor. J. Chem. Inf. Comput. Sci. 38, 669-677 https://doi.org/10.1021/ci980008g
  25. Mager, P. P. (1998) In Multivatiate Chemometrics in QSAR: A Dialogue. Letchworth, Hertfordshire, England, Wiley
  26. Dunn, W. J. III. (1977) Molar refractivity as an independent variable in quantitative structure-activity studies. Eur. J. Med. Chem. 12, 109-127