Comparative Molecular Similar Indice Analysis on Fungicidal Activity of N-phenyl-O-phenylthionocarbamate Derivatives against Rice Sheath Blight and Phytophthora Blight

벼잎집무늬마름병균 및 고추역병균에 대한 N-Phenyl-O-phenyl-thionocarbamate 유도체들의 살균활성에 관한 비교분자 유사성 분석

  • Soung, Min-Gyu (Division of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Yoo, Jae-Won (Hanbul Cosmetics Co. Ltd., R & D Center) ;
  • Jang, Seok-Chan (Division of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Sung, Nack-Do (Division of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • 성민규 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 유재원 (한불화장품(주) 중앙연구소) ;
  • 장석찬 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부)
  • Published : 2007.09.30

Abstract

Comparative molecular similarity indice analysis (CoMSIA) models on the fungicidal activities of N-phenyl substituents (X) in N-phenyl-O-phenylthionocarbamate derivatives against rice sheath blight (Rhizoctonia solani: RS) and phytophthora blight (Phytophthora capsici: PC) were derived. Also, the characterizations of H-bonds between substrates and ${\beta}-tubulin$ were discussed quantitatively. It was revealed that, from the contour maps of CoMSIA models, the H-bond acceptor field contributed the most highly to fungicidal activity for two fungi in common. It is predicted that the selectivity in the fungicidal activity between two fungi is caused by results from the roles of H-bond donor disfavor functional groups in RS and H-bond acceptor disfavor functional groups in PC when these two groups induced at meta- and para-position on the N-phenyl ring. And also, if the substituents (X) are steric disfavor group, negative charge favor groups are introduced at the metaposition in RS and H-bond acceptor group is introduced at the para-position in PC, the antifungal activity against two fungi will be likely able to be increased.

벼잎집무늬마름병균(RS: Rhizoctonia solani) 및 고추역병균 (PC: Phytophtora capsici)에 대한 N-phenyl-O-phenylthionocarbamate 유도체 중, N-phenyl 치환체(X)들의 살균활성에 관한 비교분자 유사성 지수분석(CoMSIA) 모델을 유도하고 기질분자와 ${\beta}-tubulin$ 사이의 수소결합성을 정량적으로 검토하였다. CoMSIA 모델들의 기여도로부터 두 균주에 대한 살균활성은 공통적으로 수소결합 받게장이 가장 크게 기여하였다. 두 균주 사이의 살균활성에 있어서 선택성은 N-phenyl 고리상 para- 및 meta-치환기로서, RS에서는 수소결합 주게가 아닌 작용기를 그리고 PC에서는 수소결합 받게가 아닌 작용기들의 역할에 기인하는 것으로 예측된다. 또한, RS에서는 meta-위치에 입체적으로 작고 음하전을 선호하는 치환기(X)가 그리고 PC에서는 para-위치에 수소결합 받게가 도입된다면 두 균주에 대한 살균 활성이 증가 할 것이다.

Keywords

References

  1. Hollomon, D. W., Butters, J. A., Barker, H. and Hall, L. (1998) Fungal ${\beta}$-tubulin, Expressed as a fusion protein, binds benzimidazole and phenylcarbamate fungicides. Antimicrob. Agents Chemother. 42, 2171-2173
  2. Leroux, P. (1987) La resistance des champignons aux fongicides. Phytoma 386, 31-55
  3. Leroux, P. and M. Gredt (1979) Phenomenes de resistance croisee negative chez Botrytis cinerea entre les fongicides benzimidazoles et des herbicides carbamates. Phytiatrie-Phytopharmacie. 28, 79-86
  4. Kato, T., Suzuki, K., Takahashi, J. and Kamoshita, K. (1984) Negatively correlated cross-resistance between benzimidazole fungicides and methyl N-3,5-dichlorophenyl-carbamate. Japan Pesticide Science 9, 489-495 https://doi.org/10.1584/jpestics.9.489
  5. Leroux, P., Gredt, M., Massenot, F. and Kato, T. (1985) Active du phenylcarbamate: S 32165 sur Botrytis cinerea, agent de pourriture grise de la vigne. Fungicide for Crop Protection, British Crop Protection Council Monograph. 31, 443-446
  6. De Waard, M. A. (1984) Negatively correlated cross-resistance and synergism as strategies in coping with fungicide resistance. Proceedings 1984 British Crop Protection Conference: Pests and Diseases, 573-584
  7. Nakata, A., Sano, S., Hashimito, S., Hayakawa, K., Nishikawa, H. and Yasuda, Y. (1987) Negatively correlated cross-resistance to N-phenylformamidoximes in benzimidaole-resistant phytopathogenic fungi. Annals Phytopathological Society Japan 53, 659-662 https://doi.org/10.3186/jjphytopath.53.659
  8. Sung, N. D. and Sung, M. K. (1999) Phenyl substituent effect on the fungicidal activity of N-phenylthionocarbamate derivatives, Korean J. Pest. Sci. 3, 29-36
  9. Sung, N. D., Soung, M. K., You, J. W. and Jang, S. C. (2006) Comparative molecular field analyses on the fungicidal activities of N-phenylthionocarbamate derivatives based on different alignment approaches. Korean J. Pest. Sci. 10, 157- 164
  10. Sung, N. D., Park, K. H., Seong, M. G. and Jang, S. C. (2007) 3D-QSAR analysis on the fungicidal activities of N-phenyl-Ophenylthionocarbamate analogues against gray mold (Botrytis cinerea). Korean J. Pest. Sci. 11, 59-66
  11. Etter, M. C. (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc. Chem. Res. 23, 120-126 https://doi.org/10.1021/ar00172a005
  12. Klebe, G., Abraham, U. and Mietzner, T. (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 37, 4130-4146 https://doi.org/10.1021/jm00050a010
  13. Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303, St. Louis, MO. 63144-2913, USA
  14. Kerr, R. (1994) Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. Biophys. J. 67, 1501-1515 https://doi.org/10.1016/S0006-3495(94)80624-1
  15. Purcell, W. P. and Singer, J. A. (1967) A brief review and table of semiempirical parameters used in the Huckel molecular orbital method. J. Chem. Eng. Data. 122, 235-246
  16. Klebe, G. (1993) In 3D-QSAR Drug Design, Theory, Methods and Applications: Structural Alignment of Molecules. (Kubinyi, H. ed.), ESCOM. Leiden. pp. 173-199
  17. Marshall, G. R., Barry, C. D., Bosshard, H. E., Dammkoehler, R. A. and Dunn, D. A. (1979) In Computer assisted Drug Design (Olesen, E. C. & Christoffersen R. E., eds.), ACS, Washington. D. C., pp. 205
  18. Clark, M., Cramer III. R. D., Jones, D. M., Patterson, D. E. and Simeroth, P. E. (1990) Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases, Tetrahedron Comput. Methodol. 3, 47-59 https://doi.org/10.1016/0898-5529(90)90120-W
  19. Cramer, R. D., Bunce, J. D. and Patterson, D. E. (1988) Crossvalidation, Bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct. Act. Relat. 7, 18-25 https://doi.org/10.1002/qsar.19880070105
  20. Morejhon, L. C. and Foskett, D. E. (1986) In Cell and Molecular Biology of the Cytoskeleton. Tubulins from plants, fungi and protists. (Shay, J. W. ed), Plenum Press, New York, pp. 257-329
  21. Hamel, E. (1996) Antimitotic natural products and their interactions with tubulin. Med. Res. Rev. 16, 207-231 https://doi.org/10.1002/(SICI)1098-1128(199603)16:2<207::AID-MED4>3.0.CO;2-4