Suppressive Effects of Haedongpi-san, a Traditional Herbal Medicine, on Collagen-induced Arthritis in Mice

해동피산(海桐皮散)의 콜라젠으로 유발된 류마티스관절염 억제 효과

  • Kang, Sung-Youp (Department of Pathology, College of Oriental Medicine, Daejeon University) ;
  • Jin, Mi-Rim (Department of Pathology, College of Oriental Medicine, Daejeon University) ;
  • Choi, Jeong-June (Department of Pathology, College of Oriental Medicine, Daejeon University) ;
  • Koo, Young-Sun (Department of Internal Medicine, College of Oriental Medicine, Daejeon University) ;
  • Roh, Seong-Soo (Laboratory of Herbology, College of Oriental Medicine, Daejeon University) ;
  • Kim, Dong-Hee (Department of Pathology, College of Oriental Medicine, Daejeon University)
  • 강성엽 (대전대학교 한의과대학 병리학교실) ;
  • 진미림 (대전대학교 한의과대학 병리학교실) ;
  • 최정준 (대전대학교 한의과대학 병리학교실) ;
  • 구영선 (대전대학교 한의과대학 내과학교실) ;
  • 노성수 (대전대학교 한의과대학 본초학교실) ;
  • 김동희 (대전대학교 한의과대학 병리학교실)
  • Published : 2007.08.25

Abstract

The present study was done to assess the suppressive effects of Haedongpi-san(HDPS), a traditional herbal medicine, on collagen induced arthritis (CIA) in mice and to examined it's effects on immune system. Oral administration of HDPS (200 or 400 mg/Kg) significantly suppressed the progression of CIA, which extend is comparable to that of methotrexate (MTX, 30 mg/Kg), a positive control. Histological examinations reveled that HDPS inhibited infiltration of inflammatory cells into affected paw joint, and bone erosion and cartilage destruction were greatly reduced compared with control. In paw joint, the number of CD3+ cells and CD11b+/Gr-1+ cells were greatly reduced by HDPS. The levels of pathologic cytokines including TNF-a and IL-6 were significantly decreased in the serum by oral treatment with HDPS. The levels of $IFN-{\gamma}$ in the culture supernatant of splenocyte stimulated with CD3/CD28 or collagen were dramatically decreased, while those of IL-4 was increased. Rheumatoid factors including IgG, IgM and collagen specific antibody were present much lower in the serum of HDPS treated mice than control. In peripheral blood mononuclear cells of HDPS treated mice, the percentage of CD3+, CD3+/CD69+, CD4+, CD4+/CD25+ cells were significantly decreased, while CD19+ cells were slightly increased compared with control. The absolute number of CD19+, CD3+, CD3+/CD69+, CD4+/CD25+, CD49b+ cell in spleen from HDPS treated mice were significantly decreased. The absolute number of CD3+, CD3+/CD69+, CD4+, CD4+/CD25+ CD8+, CD49b+, CD3+/CD49b+ cells in draining lymph node were significantly increased compared with control. Taken together, HDPS has suppressive effects on rheumatoid arthritis by modulating immune system, and has potential to use as an therapeutic for rheumatoid arthritis.

Keywords

References

  1. Goronzy, J.J. and Weyand, C.M. Rheumatoid arthritis Immunol Rev 204: 55-73, 2005
  2. Grarallese, E.M. Bone destruction in arthritis Ann Rheum Dis 61: S2: ii84-86
  3. Mor, A. et al. The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammtion and joint destruction. Clin Immunol 115: 118-128, 2005 https://doi.org/10.1016/j.clim.2004.12.009
  4. Miossec, P. An update on the cytokine network in rheumatoid arthritis. Curr Opin Rheumatol 16: 218-222, 2004 https://doi.org/10.1097/00002281-200405000-00009
  5. Miossec, P. pro and anti-inflmmatory cytokine balance in rheumatoid arthritis. Clin Exp Rheumatol 13 (Suppl, 12): S13-S16, 1995
  6. Klimiuk, M.C. et al. Production of cytokine and metalloproteinase in rheumatoid arthritis is T cell dependent. Clin Immunol 90: 65-78, 1999 https://doi.org/10.1006/clim.1998.4618
  7. Ponchel, F. et al. Dysregulated lymphocyte proliferation and differentiation in patient with rheumatoid arthritis. Blood 100: 4550-4556, 2002 https://doi.org/10.1182/blood-2002-03-0671
  8. Carson, D.A., Chen, P.P., Kipps, T. New roles for rheumatoid factor. J Clin Invest 87: 379-383, 1991 https://doi.org/10.1172/JCI115007
  9. Tighe, H., Chen, P.P., Trucker, R. et al. Function of B cells expressing a human immunoglobulin M rheumatoid factor autoantibody in transgenic mic. J Exp Med 177: 109-118, 1993 https://doi.org/10.1084/jem.177.1.109
  10. Weyand, C.M. et al. B cells in rheumatoid synovitis. Arthritis Res Ther 7 (Suppl 3): S9-S12, 2005
  11. Kotake, S. et al. Activated human T cells directly induce osteoclastogenesis from human monocytes :possible role of T cells in bone destruction in RA patients. Arthritis Rheum 44: 1003-1012, 2001 https://doi.org/10.1002/1529-0131(200105)44:5<1003::AID-ANR179>3.0.CO;2-#
  12. Goronzy, J.J. and Weyand, C.M. T cell regulation in rheumatoid arthritis Curr Opin Rheumatol 16: 212-217, 2004 https://doi.org/10.1097/00002281-200405000-00008
  13. Simon, L.S. DMARDs in the treatment of rheumatoid arthritis: current agents and future developments. Int J Clin Pract 54: 243-249, 2000
  14. Feldmann, M., Miani, R.N. Anti-TNF alpha therapy of theumatoid arthritis: What have we learned. Annu Rev Immunol 19: 163-196, 2001 https://doi.org/10.1146/annurev.immunol.19.1.163
  15. 권재식 외. 痺證. 정담, pp 207-208, 214-215, 219-222, 270, 1993
  16. 한방재활의학과학회. 한방재활의학. 군자출판사, p 83, 2005
  17. 顧伯華. 실용중의외과학. 상해과학기술출판사, pp 385-389, 1985
  18. 李劍松 외. 신편중의풍습병비방전서. 과학기술문헌출판사, p 590, 2005
  19. 조영주. 희렴이 RA 병태 모델에서 關聯因子 및 組織學的 변화에 미치는 영향. 대한동의생리병리학회지 17(2):403-411, 2003
  20. 박철원 외. Lipopoly saccharide 유발 토끼 관절염에서 황백약침(黃柏藥鍼)이 관절염증의 억제에 미치는 영향. 대한침구학회지 15(1):229-248, 1998
  21. 김재주. CFA에 의해 유발된 관절염 백서 모델에 있어서 대방풍탕의 진통 효과. 원광대학교대학원, 2002
  22. 조종철. CIA 생쥐의 관절염 유발에 대한 청열사습탕가미방의 억제효과. 대전대학교대학원, 2004
  23. 황덕순. 가감목방기탕이 흰쥐의 adjuvant 유발 관절염에 미치는 영향. 세명대학교대학원, 2005
  24. 최정식 외. 鷄血藤이 collagen으로 誘發된 생쥐의 關節炎抑制에 關한 硏究. 대한본초학회지 18(3):79-88, 2003
  25. 김병수 외. 玄胡索.赤芍藥.紅花 混合藥鍼掖이 關節炎 白鼠의 炎症과 肝에 미치는 影響. 대한본초학회지 19(1):95-102, 2004
  26. 김경호 외. 유백피, 계지, 우슬, 봉독 및 우황, 웅담, 사향복잡제제 약침이 mouse 의 LPS 유발 관절염의 혈액학적 변화에 미치는 영향. 대한침구학회지 18(1):157-169, 2001
  27. 전국의과대학교수 역. 오늘의 진단 및 치료. 한우리, pp 892-898, 1999
  28. 하청호 외. 풍습병, 인민군의출판사, p 113, 2007
  29. 서해경 외. 류마토이드 關節炎 患者 滑膜細胞에 대한 鷄血藤의 免疫反應. 대한동의생리병리학회지 17(3):780-786, 2003
  30. Firestein, G.S. Immunological mechanisms in the pathogenesis of rheumatoid arthritis. J Clin Rheumatol 11(3):S39-44 2005 https://doi.org/10.1097/01.rhu.0000166673.34461.33
  31. Franklin, E.C., Holman, H.R., Muller-Eberhard, H.J. et al. An unusual protein component of high molecular weight in the serum of certain patients with rheumatois arthritis. J Exp Med. 105: 425-438, 1957 https://doi.org/10.1084/jem.105.5.425
  32. Firestein, G.A. The T cellcometh:interplay between adaptive immunity and cytokine networks in rheumatoid arthritis. J Clin Invest 114: 471-474, 2004 https://doi.org/10.1172/JCI22651
  33. Ji, H., Pettit, A., Ohmura, K. et al. Critical roles for interleukin a and tumor necrosis factor alpha in antibody-induced arthritis. J Exp Med 196: 77-85, 2002 https://doi.org/10.1084/jem.20020439
  34. Valencia, X., Stephens, G., Goldbach-Mansky, R. et al. TNF downregulates the function of human CD4+Cd25hi T regulatory cells. Blood 108: 253-261, 2006 https://doi.org/10.1182/blood-2005-11-4567
  35. Ospelt, C., Neidahart, M., Gay, R.E. er al. Synovial activation in rheumatoid arthritis. Front Biosci 9: 2323-2344, 2004 https://doi.org/10.2741/1399
  36. McInnes, I.B. and Liew, F.Y. Cytokine networks-towards new therapies for rheumatoid arthritis. Nat Clin Pract 1: 131-139, 2005
  37. William, R.O. Collagen-induced arthritis in mice: a major role for tumor necrosis factor-alpha. Method Mol Biol 361: 265-284, 2007