Capsosiphon Fulvescens Decreases Melanin Synthesis Via Downregulation of Tyrosinase and TRP-2 Expression

  • Yoo, Hyun-Ju (The Third Medicine, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Jo, Mi-Gyeong (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Park, Si-Jun (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Mun, Yeun-Ja (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Pyo, Hyeong-Bae (R&D Center, Hanbul Cosmetics Co.) ;
  • Lim, Kyu-Sang (The Third Medicine, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Lee, Ki-Nam (The Third Medicine, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Woo, Won-Hong (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University)
  • Published : 2007.08.25

Abstract

The green marine algae, Capsosiphon fulvescens (CF) is a food supplement cultivated in south coast of Southern Korea. The purpose of this study was to investigate the mechanism of CF-induced hypopigmentation. The present study was designed to determine the effect of CF extracton melanogenesis in B16 cells, particularly its specific effects on tyrosinase and tyrosinase-related protein 2 (TRP-2). We measured melanin contents and analyzed melanosome associated protein levels using Western blot and Reverse transcription-polymerase chian reaction (RT-PCR) analysis. CF extract markedly inhibited melanin synthesis and tyrosinase activity. In addition, cellular dendricity was slightly decreased by CF extract. In further experiments, CF extract significantly reduced the protein levels of tyrosinase and TRP-2 in B16 cells. RT-PCR analysis revealed that tyrosinase and TRP-2 mRNA levels were unaffected by CF treatment. Therefore, these results suggest that hypopigmentary effect of CF was due to post-translational degradationof tyrosinase and TRP-2.

Keywords

References

  1. Curto, E.V., Kwong, C., Hermersdorfer, H., Glatt, H., Santis, C., Virador, V., Hearing, V.J. Jr. Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem Pharmacol 57(6):663-672, 1999 https://doi.org/10.1016/S0006-2952(98)00340-2
  2. Jeong, C.H., Shim, K.H. Tyrosinase inhibitor isolated from the leaves of Zanthoxylum piperitum. Biosci Biotechnol Biochem 68(9):1984-1987, 2004 https://doi.org/10.1271/bbb.68.1984
  3. Masamoto, Y., Ando, H., Murata, Y., Shimoishi, Y., Tada, M., Takahata, K. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Biosci Biotechnol Biochem 67(3):631-634, 2003 https://doi.org/10.1271/bbb.67.631
  4. Hearing, V.J., Jimenez, M. Mammalian tyrosinase-The critical regulatory control point in melanocyte pigmentation. Int J Biochem 719(12):1141-1147, 1987
  5. Körner, A.M., Pawelek, J.M. Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science 217: 1163-1167, 1982 https://doi.org/10.1126/science.6810464
  6. Kuzumaki, T., Matsuda, A., Wakamatsu, K., Ito, S., Ishikawa, K. Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase-related protein-1 genes. Exp Cell Res 207: 33-40, 1993 https://doi.org/10.1006/excr.1993.1159
  7. Prota, G. Progress in the chemistry of melanins and related metabolites. Med Res Rev 8: 525-556, 1998 https://doi.org/10.1002/med.2610080405
  8. Kobayashi, T., Vieira, W.D., Potterf, B., Sakai, C., Imokawa, G., Hearing, V.J. Modulation of melanogenic protein expression during the switch from eu- to pheomelanogenesis. J Cell Sci 108(Pt 6):2301-2309, 1995
  9. Porta, G. Melanins and melanogenesis. Academic Press, New York, N.Y. 1992
  10. Kadekaro, A.L., Kavanagh, R.J., Wakamatsu, K., Ito, S., Pipitone, M.A., Abdel-Malek, Z.A. Cutaneous photobiology. The melanocyte vs. the sun: who will win the final round? Pigment Cell Res 16(5):434-447, 2003 https://doi.org/10.1034/j.1600-0749.2003.00088.x
  11. Barber, J.I., Townsend, D., Olds, D.P.A., King, R.A. Dopachrome oxydoreductase: a new enzyme in the pigment pathway. J Invest Dermatol 83: 145-149, 1984 https://doi.org/10.1111/1523-1747.ep12263381
  12. Yokoyama, K., Suzuki, H., Tomiya, Y., Shibahara, S. Molecular cloning of and functional analysis of a cDNA coding for human DOPAchrome tautomerase/tyrosinase -related protein-2. Biochim Biophys Acta 1217: 317-321, 1994 https://doi.org/10.1016/0167-4781(94)90292-5
  13. Bertolotto, C., Busca, R., Abbe, P., Bille, K., Aberdam, E., Ortonne, J.P., Ballotti, R. Different cis-Acting elements are involved in the regulationof TRP1 and TRP2 promoter activities by cyclic AMP: Pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol Cell Biol 18(2):694-702, 1998 https://doi.org/10.1128/MCB.18.2.694
  14. Jackson, J.I., Cambers, D.M., Tsukamoto, K., Copeland, N., Gilbert, D.J., Jenkins, N.A., Hearing, V.J. A second tyrosinase-related protein, TRP-2, maps to and mutated at the mouse slaty locus. EMBO J 11: 527-535, 1992
  15. Kwon, M.J., Nam, T.J. Effects of Mesangi (Capsosiphon fulvecens) powder on lipid metabolism in high cholesterol fed rats. J Korean Soc Food Sci Nutr 35(5):530-535, 2006 https://doi.org/10.3746/jkfn.2006.35.5.530
  16. Lee, J.H., Lee, Y.M., Lee, J.J., Lee, M.Y. Effects of Capsosiphon fulvecensextract on lipid metabolism in rats fed high cholesterol diet. J Korean Soc Food Sci Nutr 35(4):402-409, 2006 https://doi.org/10.3746/jkfn.2006.35.4.402
  17. Mun, Y.J., Yoo, H.J., Lee, K.E., Kim, J.H., Pyo, H.B., Woo, W.H. Inhibitory effect on the melanogenesis of Capsosiphon fulvecens. Yakhak Hoeji 49(5):375-379, 2005
  18. Martinez-Esparza, M., Jimenez-Cervantes, C., Solano, F., Lozano, J.A., Garcia-Borron, J.C. Mechanism of melanogenesis inhibition by tumor necrosis factor-alpha in B16/F10 mouse melanoma cells. Eur J Biochem 255: 139-146, 1998 https://doi.org/10.1046/j.1432-1327.1998.2550139.x
  19. Hosoi, J., Abe, E., Suda, T., Kuroki, T. Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dehydroxyvitamin D3 and retinoic acid. Cancer Res 45: 1474-1478, 1985
  20. Yamakoshi, J., Otsuka, F., Sano, A., Tokutake, S., Saito, M., Kikuchi, M., Kubota, Y. Lightening effect on ultraviolet-induced pigmentation of guinea pig skin by oral administration of a proanthocyanidin-rich extract from grape seeds. Pigment Cell Res 16: 629-638, 2003 https://doi.org/10.1046/j.1600-0749.2003.00093.x
  21. Hunt, G., Kyne, S., Ito, S., Wakamatsu, K., Todd, C., Thody, A.J. Eumelanin and phaeomelanin contents of human epidermis and cultured melanocytes. Pigment Cell Res 8: 202-208, 1995 https://doi.org/10.1111/j.1600-0749.1995.tb00664.x
  22. Tsatmali, M., Ancans, J., Thody, A.J. Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem 50(20):125-133, 2002 https://doi.org/10.1177/002215540205000201
  23. Jimbow, K., Hua, C., Gomez, P.F., Hirosaki, K., Shinoda, K., Salopek, T.G., Matsusaka, H., Jin, H.Y., Yamashita, T. Intracellular vesicular trafficking of tyrosinase gene family protein in eu- and pheomelanosome biogenesis. Pigment Cell Res 13: 110-117, 2000 https://doi.org/10.1034/j.1600-0749.13.s8.20.x
  24. Sturm, R.A. Human pigmentation genes and their response to solar UV radiation. Mutat Res 422: 69-76, 1998 https://doi.org/10.1016/S0027-5107(98)00176-6
  25. Steel, K.P., Davidson, D.R., Jacson, I.J. TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor. Development 115: 1111-1119, 1992
  26. Kuzumaki, T., Matsuda, A., Wakamatsu, K., Ito, S., Ishikawa, K. Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase-related protein-1 genes. Exp Cell Res 207: 33-40, 1993 https://doi.org/10.1006/excr.1993.1159
  27. Abdel-Malek, Z., Swope, V.B., Smalara, D., Babcock, G., Dawes, S., Nordlund, J.J. Analysis of the UV-induced melanogenesis and growth arrest of human melanocytes. Pigment Cell Res 7: 326-332, 1994 https://doi.org/10.1111/j.1600-0749.1994.tb00635.x
  28. Ando, H., Funasaka, Y., Oka, M., Ohashi, A., Furumura, M., Matsunaga, J. et al. Possible involvement of proteolytic degradation of tyrosinase in regulatory effect of fatty acids on melanogenesis. J Lipid Res 40: 1312-1316, 1999
  29. Ando, H., Watabe, H., Valencia, J.C., Yasumoto, K., Furumura, M., Funasaka, Y. et al. Fatty acids regulate pigmentation via proteosomal degradation of tyrosinase: a new aspect of ubiquitin-proteasome function. J Bio Chem 279: 15427-15433, 2004 https://doi.org/10.1074/jbc.M313701200
  30. Skold, H.N., Norstrom, E., Wallin, M. Regulatory Control of Both Microtubule- and Actin-dependent Fish melanosome movement. Pigment Cell Res 15(5):357-366, 2002 https://doi.org/10.1034/j.1600-0749.2002.02048.x
  31. Toyofuku, K., Valencia, J., Kushimoto, T., Costin, G-E., Virador, V.M., Vieira, W.D., Ferrans, V.J., Hearing, V.J. The etiology of Oculocutaneous albinism (OCA) type II: The pink protein modulates the processing and transport of tyrosinase. Pigment Cell Res 15: 217-224, 2002 https://doi.org/10.1034/j.1600-0749.2002.02007.x
  32. Busca, R., Bertolotto, C., Abbe, P., Englaro, W., Ishizaki, T., Narumiya, S., Boquet, P., Ortonne, J.P., Ballotti, R. Inhibition of Rho is required for cAMP-induced melanoma cell differentiation. Mol Biol Cell 9: 1367-1378, 1998 https://doi.org/10.1091/mbc.9.6.1367
  33. Ridley, A.J., Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and stress fibers in response to growth factors. Cell 70: 389-399, 1992 https://doi.org/10.1016/0092-8674(92)90163-7