Wogonin inhibits Cytokine-induced TARC/CCL17 Expression by Suppression of NF-${\kappa}B$ activation via p38 MAP kinase Signalning Pathways in HaCaT Keratinocytes

  • Jang, Seon-Il (School of Alternative Medicine & Health Science, College of Alternative Medicine, Jeonju University)
  • Published : 2007.08.25

Abstract

Thymus and activation-regulated chemokine (TARC/CCL-17), produced by keratinocytes, is a CC chemokine known to selectively Th2 type T cells via $CCR4^+$ and is implicated in the development of atopic dermatitis (AD). TARC/CCL17 expression was induced by cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interferon-${\gamma}$ (IFN-${\gamma}$). We recently found that the wogonin, a flavone isolated from Scutellaria baicalensis, suppressed TARC expression via heme oxygenase 1 (HO1) in human keratinocytes induced with mite antigen. However, little is known about the inhibitory mechanism of wogonin on TARC/CCL-17 expression stimulated with cytokines. To investigate the inhibitory mechanism, I determined the inhibitory effects of wogonin on the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and $I{\kappa}B{\alpha}$ phosphorylation, and also examined the activation of p38 MAP kainase in HaCaT keratinocytes stimulated with TNF-${\alpha}$ and IFN-${\gamma}$. Wogonin inhibited NF-${\kappa}B$-DNA complex, NF-${\kappa}B$ binding activity, and the phosphorylation of $I{\kappa}B{\alpha}$ in a dose dependent manner. Wogonin also inhibited the translocation of NF-${\kappa}B$ from cytosol to nucleus. Moreover, the phosphorylation of of p38 MAP kinase in the TNF-${\alpha}$ and IFN-${\gamma}$-stimulated HaCaT keratinocytes were suppressed by wogonin in a dose dependent manner. These results suggest that wogonin may inhibit cytokine-induced NF-${\kappa}B$ activation by $I{\kappa}B{\alpha}$ degradation via suppression of p38 MAP kinase signaling pathway in keratinocytes and modulation of wogonin signaling pathway may be beneficial for the treatment of AD.

Keywords

References

  1. Baumann, L. Cosmetic dermatology: Principles & practice. McGraw-Hill, pp 3-8, 2002
  2. Leung, D.Y., Boguniewicz, M., Howell, M.D., Nomura, I., Hamid, Q.A. New insights into atopic dermatitis. J. Clin. Invest. 113: 651-657, 2004 https://doi.org/10.1172/JCI21060
  3. Akdis, C.A., Blaser, K., Akdis, M. Apoptosis in tissue inflammation and allergic disease. Curr. Opin. Immunol. 16: 717-723, 2004 https://doi.org/10.1016/j.coi.2004.09.004
  4. Thepen, T., Langeveld-Wildschut, E.G., Bihari, I.C., van Wichen, D.F., van Reijsen, F.C., Mudde, G.C., Bruijnzeel-Koomen, C.A. Biphasic response against aeroallergen in atopic dermatitis showing a switch from an initial TH2 response to a TH1 response in situ: an immunocytochemical study. J. Allergy Clin. Immunol. 97: 828-837, 1996 https://doi.org/10.1016/S0091-6749(96)80161-8
  5. Akdis, C.A., Akdis, M., Simon, D., Dibbert, B., Weber, M., Gratzl, S., Kreyden, O., Disch, R., Wuthrich, B., Blaser, K., Simon, H.U. T cells and T cell-derived cytokines as pathogenic factors in the nonallergic form of atopic dermatitis. J. Invest. Dermatol. 113: 628-634, 1999 https://doi.org/10.1046/j.1523-1747.1999.00720.x
  6. Trautmann, A., Akdis, M., Kleemann, D., Altznauer, F., Simon, H.U., Graeve, T., Noll, M., Brocker, E.B., Blaser, K., Akdis, C.A. T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J. Clin. Invest. 106: 25-35, 2000 https://doi.org/10.1172/JCI9199
  7. Trautmann, A., Akdis, M., Schmid-Grendelmeier, P., Disch, R., Brocker, E.B., Blaser, K, Akdis, C.A. Targeting keratinocyte apoptosis in the treatment of atopic dermatitis and allergic contact dermatitis. J. Allergy Clin. Immunol. 108: 839-846, 2001 https://doi.org/10.1067/mai.2001.118796
  8. Klunker, S., Trautmann, A., Akdis, M., Verhagen, J., Schmid-Grendelmeier, P, Blaser, K, Akdis, C.A. A second step of chemotaxis after transendothelial migration: keratinocytes undergoing apoptosis release IFN-${\gamma}$ inducible protein 10, monokine induced by IFN-$\gamma$, and IFN-$\gamma$-inducible $\alpha$-chemoattractant for T cell chemotaxis toward epidermis in atopic dermatitis. J. Immunol. 171: 1078-1084, 2003 https://doi.org/10.4049/jimmunol.171.2.1078
  9. Rossi, D., Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18: 217-242, 2000 https://doi.org/10.1146/annurev.immunol.18.1.217
  10. Zlontik, A., Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12: 121-127, 2004 https://doi.org/10.1016/S1074-7613(00)80165-X
  11. Galli, G., Chantry, D., Annunziato, F., Romagnani, P., Cosmi, L., Lazzeri, E., Raport, C.J., Galli, G., Manetti, R., Mavilia, C., Vanini, V., Chantry, D., Maggi, E., Romagnani, S. Macrophage-derived chemokine production by activated human T cells in vitro and in vivo: preferential association with the production of type 2 cytokines. Eur. J. Immunol. 30: 204-210, 2000 https://doi.org/10.1002/1521-4141(200001)30:1<204::AID-IMMU204>3.0.CO;2-G
  12. Sallusto, F., Palermo, B., Lenig, D., Miettinen, M., Matikainen, S., Julkunen, I., Forster, R., Burgstahler, R., Lipp, M., Lanzavecchia, A. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29: 1617-1625, 1999 https://doi.org/10.1002/(SICI)1521-4141(199905)29:05<1617::AID-IMMU1617>3.0.CO;2-3
  13. Vestergaard, C., Yoneyama, H., Murai, M., Nakamura, K., Tamaki, K., Terashima, Y., Imai, T., Yoshie, O., Irimura, T., Mizutani, H., Matsushima, K. Overexpression of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis-like lesions. J. Clin. Invest. 104: 1097-1105, 1999 https://doi.org/10.1172/JCI7613
  14. Kakinuma, T., Nakamura, K., Wakugawa, M., Mitsui, H., Tada, Y., Saeki, H., Torii, H., Asahina, A., Onai, N., Matsushima, K., Tamaki, K. Thymus and activation-regulated chemokine in atopic dermatitis: serum thymus and activation-regulated chemokine level is closely related with disease activity. J. Allergy Clin. Immunol. 107: 535-541, 2001 https://doi.org/10.1067/mai.2001.113237
  15. Nickel, R., Beck, L.A., Stellato, C., Schleimer, R.P. Chemokines and allergic disease. J. Allergy Clin. Immunol. 104: 723-742, 1999 https://doi.org/10.1016/S0091-6749(99)70281-2
  16. Imai, T., Chantry, D., Raport, C.J., Wood, C.L., Nishimura, M., Godiska, R., Yoshie, O., Gray, P.W. Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. J. Biol. Chem. 273: 1764-1768, 1998 https://doi.org/10.1074/jbc.273.3.1764
  17. Bonecchi, R., Bianchi, G., Bordignon, P.P., D'Ambrosio, D., Lang, R., Borsatti, A., Sozzani, S., Allavena, P., Gray, P.A., Mantovani, A., Sinigaglia, F. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187: 129-134, 1998 https://doi.org/10.1084/jem.187.1.129
  18. Lim, B.O. Efficacy of wogonin in the production of immunoglobulins and cytokines by mesenteric lymph node lymphocytes in mouse colitis induced with dextran sulfate sodium. Biosci. Biotechnol. Biochem. 68: 2505-2511, 2004 https://doi.org/10.1271/bbb.68.2505
  19. Brandi, M.L. Flavonoids: biochemical effects and therapeutic applications. Bone Miner. 19(Suppl. 1):S3-14, 1992 https://doi.org/10.1016/0169-6009(92)90861-7
  20. Lim, B.O., Choue, R.W., Lee, H.Y., Seong, N.S., Kim, J.D. Effect of the flavonoid components obtained from Scutellaria radix on the histamine, immunoglobulin E and lipid peroxidation of spleen lymphocytes of Sprague-Dawley rats. Biosci. Biotechnol. Biochem. 67: 1126-1129, 2003 https://doi.org/10.1271/bbb.67.1126
  21. Chang, Y.L., Shen, J.J., Wung, B.S., Cheng, J.J., Wang, D.L. Chinese herbal remedy wogonin inhibits monocyte chemotactic protein-1 gene expression in human endothelial cells. Mol. Pharmacol. 60: 507-513, 2001
  22. Lee, S.O., Jeong, Y.J., Yu, M.H., Lee, J.W., Hwangbo, M.H., Kim, C.H., Lee, I.S. Wogonin suppresses TNF-alpha-induced MMP-9 expression by blocking the NF-kappaB activation via MAPK signaling pathways in human aortic smooth muscle cells. Biochem. Biophys. Res. Commun. 351: 118-125, 2006 https://doi.org/10.1016/j.bbrc.2006.10.006
  23. Lee, B.S., Shim, S.M., Heo, J., Pae, H.O., Seo, B.Y., Han, S.Y., Sohn, D.H., Jang, S.I., Chung, H.T. Wogonin suppresses TARC expression induced by mite antigen via heme oxygenase 1 in human keratinocytes. Suppressive effect of wogonin on mite antigen-induced TARC expression. J. Dermatol. Sci. 46: 31-40, 2007 https://doi.org/10.1016/j.jdermsci.2007.01.001
  24. Horikawa, T., Nakayama, T., Hikita, I., Yamada, H., Fujisawa, R., Bito, T., Harada, S., Fukunaga, A., Chantry, D., Gray, P.W., Morita, A., Suzuki, R., Tezuka, T., Ichihashi, M., Yoshie, O. IFN-gamma-inducible expression of thymus and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in epidermal keratinocytes and their roles in atopic dermatitis. Int. Immunol. 14: 767-773, 2002 https://doi.org/10.1093/intimm/dxf044
  25. Chaturvedi, M.M., Mukhopadhyay, A., Aggarwal, B.B. Assay for redoxsensitive transcription factor. Methods Enzymol. 319: 585-602, 2000 https://doi.org/10.1016/S0076-6879(00)19055-X
  26. Vestergaard, C., Bang, K., Gesser, B., Yoneyama, H., Matsushima, K., Larsen, C.G. A Th2 chemokine, TARC, produced by keratinocytes may recruit CLA+CCR4+ lymphocytes into lesional atopic dermatitis skin. J. Invest. Dermatol. 115: 640-646, 2001 https://doi.org/10.1046/j.1523-1747.2000.00115.x
  27. Kobayashi, M., Shimauchi, T., Hino, R., Tokura, Y. Roxithromycin downmodulates Th2 chemokine production by keratinocytes and chemokine receptor expression on Th2 cells: its dual inhibitory effects on the ligands and the receptors. Cell. Immunol. 228: 27-33, 2004 https://doi.org/10.1016/j.cellimm.2004.03.011
  28. Komine, M., Kakinuma T., Kagami, S., Hanakawa, Y., Hashimoto, K., Tamaki, K. Mechanism of thymus- and activation-regulated chemokine (TARC)/CCL17 production and its modulation by roxithromycin. J. Invest. Dermatol. 125: 491-498, 2005 https://doi.org/10.1111/j.0022-202X.2005.23840.x
  29. Pastore, S., Mascia, F., Mariotti, F., Dattilo, C., Mariani, V., Girolomoni, G. ERK1/2 regulates epidermal chemokine expression and skin inflammation. J. Immunol. 174: 5047-5056, 2005 https://doi.org/10.4049/jimmunol.174.8.5047
  30. Murphy, P.M., Baggioline, M., Charo, I.F., Hebert, C.A., Horuk, R., Matsushima, K., Miller, K., Miller, L.H., Oppenheim, J.J., Power, C.A. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52: 145-176, 2000
  31. Imai, T., Baba, M., Nishimura, M., Kakizaki, M., Takagi, S., Yoshie, O. The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J. Biol. Chem. 1272: 15036-15042, 1997
  32. Imai, T., Baba, M., Nishimura, M., Kakizaki, M., Nishimura, M., Wang, J., Gray, P., Matsushima, K., Yoshie, O. Selective recruitment of CCR4bearing Th2 cells toward antigen-presenting cells by the CC chemokine thymus and activationregulated chemokine and macrophage-derived chemokine. Int. Immunol. 11: 81-88, 1999 https://doi.org/10.1093/intimm/11.1.81
  33. Campbell, J.J., Haraldsen, G., Pan, J., Rottman, J., Qin, S., Ponath, P., Andrew, D.P., Warneke, R., Ruffing, N., Kassam, N., Wu, L., Butcher, E.C. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400: 776-880, 1999 https://doi.org/10.1038/23495
  34. Sandoval-Lopez, G., Teran, L.M. TARC: novel mediator of allergic inflammation. Clin. Exp. Allergy 31: 1809-1812, 2001 https://doi.org/10.1046/j.1365-2222.2001.01268.x
  35. Zhao, B., Stavchansky, S.A., Bowden, R.A., Bowman, P.D. Effect of interleukin-1beta and tumor necrosis factor-alpha on gene expression in human endothelial cells. Amer. J. Physiol. Cell Physiol. 284: C1577-C1583, 2003 https://doi.org/10.1152/ajpcell.00243.2002
  36. Largo, R., Alvarez-Soria, M.A., Diez-Ortego, I, Calvo, E., Sanchez-Pernaute, O., Egido, J., Herrero-Beaumont, G. Glucosamine inhibits IL-1betainduced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthritis Cartil. 11: 290-298, 2003 https://doi.org/10.1016/S1063-4584(03)00028-1
  37. Barnes, P.J., Karin, M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336: 1066-1071, 1997 https://doi.org/10.1056/NEJM199704103361506
  38. Li, Q., Verma, I.M. NF-kappaB regulation in the immune system. Nat. Rev., Immunol. 2: 725-734, 2002 https://doi.org/10.1038/nri910
  39. Wang, X.C., Jobin, C., Allen, J.B., Roberts,W.L., Jaffe, G.J. Suppression of NF-kappaB-dependent proinflammatory gene expression in human RPE cells by a proteasome inhibitor. Invest. Ophthalmol. Vis. Sci. 40: 477-486, 1999
  40. Ruland, J., Mak, T.W. Transducing signals from antigen receptors to nuclear factor kappaB. Immunol. Rev. 193: 93-100, 2003 https://doi.org/10.1034/j.1600-065X.2003.00049.x
  41. Jang, S.I., Kim, H.J., Kim, Y.J., Jeong, S.I., You, Y.O. Tanshinone IIA inhibits LPS-induced NF-kappaB activation in RAW 264.7 cells: possible involvement of the NIK-IKK, ERK1/2, p38 and JNK pathways. Eur J Pharmacol. 542: 1-7, 2006 https://doi.org/10.1016/j.ejphar.2006.04.044
  42. Guha, M., Mackman, N. LPS induction of gene expression in human monocytes. Cell. Signal. 13: 85-94, 2001 https://doi.org/10.1016/S0898-6568(00)00149-2
  43. Bhat, N.R., Zhang, P., Lee, J.C., Hogan, E.L. Extracellular signal regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J. Neurosci. 18: 1633-1641, 1998 https://doi.org/10.1523/JNEUROSCI.18-05-01633.1998
  44. Komine, M., Kakinuma, T, Kagami, S., Hanakawa, Y., Hashimoto, K., Tamaki, K. Mechanism of thymus- and activation-regulated chemokine (TARC)/CCL17 production and its modulation by roxithromycin. J. Invest. Dermatol. 125: 491-498, 2005 https://doi.org/10.1111/j.0022-202X.2005.23840.x
  45. Xiao, Y.Q., Malcolm, K., Worthen, G.S., Gardai, S., Schiemann, W. P.V., Fadok, A., Bratton, D.L., Henson, P.M. Cross-talk between ERK and p38 MAPK mediates selective suppression of pro-inflammatory cytokines by transforming growth factor-beta. J. Biol. Chem. 277: 14884-14893, 2002 https://doi.org/10.1074/jbc.M111718200
  46. Chen, J.C., Ho, F.M., Chao, P.D.L., Chen, C.P., Jeng, K.C., Hsu, H.B., Lee, S.T., Wu, W.T, Lin, W.W. Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur. J. Pharmacol. 521: 9-20, 2005 https://doi.org/10.1016/j.ejphar.2005.08.005