DOI QR코드

DOI QR Code

Experimental Characterization of Dynamic Tensile Strength in Unidirectional Carbon/Epoxy Composites

  • Published : 2008.06.01

Abstract

This study aims to characterize the dynamic tensile strength of unidirectional carbon/epoxy composites. Two different carbon/epoxy composite systems, the unidirectional T700S/2500 and TR50S/modified epoxy, are tested at the static condition and the strain rate of $100\;s^{-1}$. A high-strain-rate test was performed using a tension-type split Hopkinson bar technique with a specific fixture for specimen. The experimental results demonstrated that both tensile strength increase with strain rate, while the fracture behaviors are quite different. By the use of the rosette analysis and the strain transformation equations, the strain rate effects of material principal directions on tensile strength are investigated. It is experimentally found that the shear strain rate produces the more significant contribution to strain rate effect on dynamic tensile strength. An empirical failure criterion for characterizing the dynamic tensile strength was proposed based on the Hash-in's failure criterion. Although the proposed criterion is just the empirical formula, it is in better agreement with the experimental data and quite simple.

Keywords

References

  1. T. Nishiwaki, SAMPE J. 38, 80-82 (2002)
  2. Q. Bing and C. T. Sun, Compos. Sci. Technol. 65, 2481-2491 (2005) https://doi.org/10.1016/j.compscitech.2005.06.012
  3. C. T. Sun and K. J. Yoon, J. Compos. Mater. 25, 1297-1313 (1991) https://doi.org/10.1177/002199839102501003
  4. C. A. Ross, W. H. Cook and L. L. Wilson, Exper. Technol. November, 30-33 (1984)
  5. Z. G. Liu and C. Y. Chiem, Exper. Technol. March, 20-21 (1988)
  6. S. V. Thiruppukuzhi and C. T. Sun, Compos. Sci. Technol. 61, 1-12 (2001) https://doi.org/10.1016/S0266-3538(00)00133-0
  7. J. Harding and L. M. Welsh, J. Mater. Sci. 18, 1810-1826 (1983) https://doi.org/10.1007/BF00542078
  8. G. H. Staab and A. Gilat, J. Compos. Mater. 29, 1308-1320 (1995) https://doi.org/10.1177/002199839502901003
  9. N. Taniguchi, T. Nishiwaki and H. Kawada, Adv. Compos. Mater. 16, 167-180 (2007) https://doi.org/10.1163/156855107780918937
  10. Z. Hashin, J. Appl. Mech. 47, 329-334 (1980) https://doi.org/10.1115/1.3153664
  11. F. Pierron and A. Vautrin, Compos. Sci. Technol. 56, 483-488 (1996) https://doi.org/10.1016/0266-3538(96)00004-8
  12. C. T. Sun and I. Chung, Composites 24, 619-623 (1993) https://doi.org/10.1016/0010-4361(93)90124-Q
  13. K. Ogawa, A. Kuraishi, T. Nishida and F. Sugiyama, J. Soc.Mater. Sci., Japan 45, 799-804 (1996) https://doi.org/10.2472/jsms.45.799
  14. K. F. Graff, Wave Motion in Elastic Solids. Dover Publications, Inc., Mineola, NY (1991)
  15. J. Tsai and C. T. Sun, Intl. J. Solid Struct. 41, 3211-3224 (2004) https://doi.org/10.1016/j.ijsolstr.2003.12.010
  16. A. J. Kinloch and R. J. Young, Fracture Behavior of Polymers. Elsevier, The Netherlands (1983)