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THE BFK-GLUING FORMULA FOR ZETA-DETERMINANTS
AND THE VALUE OF RELATIVE ZETA FUNCTIONS
AT ZERO

YOONWEON LEE

ApsTraCT. The purpose of this paper is to discuss the constant term
appearing in the BFK-gluing formula for the zeta-determinants of Lapla~
clans on a complete Riemannian manifold when the warped product met-
ric is given on a collar neighborhood of a cutting compact hypersurface. If
the dimension of a hypersurface is odd, generally this constant is known
to be zero. In this paper we describe this constant by using the heat
kernel asymptotics and compute it explicitly when the dimension of a
hypersurface is 2 and 4. As a byproduct we obtain some results for the
value of relative zeta functions at s = 0.

1. Introduction

The gluing formula for zeta-determinants of Laplacians on a compact Rie-
mannnian manifold with boundary had been given by Burghelea, Friedlander,
and Kappeler in [2] and later was extended by Carron in [3]. Their formula,
however, contains a constant term which is expressed by the zero coefficient of
some asymptotic expansions ([2], [8]). If the dimension of a cutting compact
hypersurface is odd, this constant is known to be zero ([7]). If the product met-
ric is given on a collar neighborhood of a cutting hypersurface, this constant
was computed explicitly in [3] and [9]. The BFK-gluing formula also contains
some informations about the value of relative zeta functions at s = 0. In this
paper we discuss this constant term when the warped product metric is given
on a collar neighborhood of a cutting compact hypersurface. More precisely,
we describe this constant in terms of heat kernel asymptotics and compute it
explicitly when the dimension of a cutting compact hypersurface is 2 and 4.
As a byproduct we obtain some informations about the value of relative zeta
functions at s = 0, which we discuss in the last section.
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Let (M, g) be either a complete oriented Riemannian manifold or a compact
oriented Riemannian manifold with boundary W (W is possibly empty) with
dimension m+1. Suppose that Y is a compact hypersurface of M with YNW =
0. Choose a collar neighborhood N_;; of Y such that N_; ; is diffeomorphic
to ([-1,1] x Y)) with N_1; "W = § and Y is identified with {0} x Y. We
assume that g is a warped product metric on N_j 1, i.e.,

(11) glN_l,l = (duz + eh(u)gY)7

where gy is a Riemannian metric on Y, u is the normal direction to Y and
h: [-1,1] — R is a smooth function with h(0) = 0. We denote by £ the
unit vector field on N_; ; which is normal to Y, := {u} x Y. Let E — M be
a complex vector bundle on M having the product structure on N_; 1, which
means that E|y_, , = p*Fl|y, where p: [-1,1] x Y — [-1, 1] is the projection
on the first component. Then the Laplacian Ajs corresponding to the metric
g is described on N_1 ; as follows.

2
(1.2) Apln_,, = —% - %h’(u)a% + e MWAy,
where m = dimY and Ay is a Laplacian on Y. We impose a boundary
condition Py on W so that Ay can be extended to a non-negative self-adjoint
operator. We denote by M, the manifold with boundary W UY UY obtained
by cutting M along Y (= Yp) and by Ap,,, the natural extension of Ay
to Mcys. We also denote by Yp1 (Yp2) the component of the boundary of
M., which is the copy of ¥ and % points outward (inward). We impose
the Dirichlet boundary condition on Yp1 U Yy 2 and denote by Apz,,, v, the
realization of Ay, with respect to Py on W and the Dirichlet boundary

cut

condition on Y51 UYy 2. Then for A € R (e_t(AM*’)‘) — e_t(AMﬂ»t'”O*”\)) is

a trace class operator (see [3]} and we define the relative zeta function and
relative zeta-determinant for (Ay + A, A,y +A) (cf. [13]) by
(1.3)

C(S;AM 4 /\,AMCumo 4 )\) _ ﬁfooo 51Ty <e—t(AM+A) _ e—t(AMCuty’Yo+"‘)) dt,

logDet (Ap + A, Adseyiyo +A) = —C (0 A0 + A Apens o + A) -

Throughout this paper we assume that for A € RT the Dirichlet boundary value
problem for Ay, + A has a unique solution, i.e., for (f,g) € C*(Yo,1 UYp2)
there exists a unique solution ¢ such that

(AMcut =+ )‘)¢ =0, ¢|Yo,1 = fa ¢'Y0,2 =g PW(¢)|W =0.
Then Burghelea, Friedlander, and Kappeler ([2]) had studied
‘ log Det (Anr + A, Anrey, o + A)

for A € R* on a compact manifold and later Carron ([3]) extended their result
to the case of a complete non-compact manifold.
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To state their results, we introduce elliptic ¥DO’s Q1(A), Q2(A), and R(A)
acting on C°(Y') as follows. For f € C°(Y), we choose unique sections ¢,
P € C%°(Mey) satisfying

(Apre + N6 =0, dly,, =Ff, dlv, =0, Pw(d)lw =0,
(AMcut + )‘)w =0, w‘YO,l = 0, ?#"1|Y0,2 = f, P"‘(w)fw = 0.

Then we define
9 i
QW0 = (520) s = (550 oo

0 0
@00 = (o) bos = (559 bos
and define the Dirichlet-to-Neumann operator R()) : C°(Y) — C=(Y) by
(1.5) RO = Q1(0) + Q2.

It is a well-known fact that for A € RT, R(}) is a positive elliptic ¥DO of
order 1. Then they proved the following equality. For some real constants m;
0<j<[ZD

(1.4)

53
(1.6) logDet (Aps + A\, Apryy o +A) = Y m; A + logDetR(A).
7=0

It is known ([2], [3]) that log Det (Aps + A, Aar,,, 1o + A) and log Det R()) have
asymptotic expansions as A — oo, whose coefficients can be computed by inte-
gral of some densities determined by the symbols of operators. Moreover, the
zero coefficient in the asymptotic expansion of log Det (Aar + A, Aaron, vo + A)
is zero (Lemma 3.2 or (19]). Hence —mp in (1.6) is, in fact, the zero coefficient
in the asymptotic expansion of log DetR()\). This fact enables us to compute
7o in some cases. It is known that mp = 0 when dim M is even ([7]). If the
metric g is a product one on N_1 so that Ay = —82 4+ Ay on N_j4, it is
known that 7o = log2 - (Ca, (0) + dimkerAy) (]3], [9]).

On the other hand, if M is compact or the essential spectrum o.ss(Anr) of
A has a positive lower bound, the coefficient of log A in the asymptotic ex-
pansion of log Det (Anr + A, Anr.y,vo +A) 18 C(0; Anry Aoy, o) + dimkerApy
{Lemma 3.2). Hence, the comparison of the log A-coefficients in the asymptotic
expansions of (1.6) gives some informations about the value of the relative zeta.
functions at zero.

In this paper we are going to discuss the constant 7 in (1.6}, or equivalently

the polynomial ZE‘E}) m; X, and the value of relative zeta functions at s =
0 when the Laplacian is given by (1.2) on N_j;. We next discuss, using
the result in [10], the value of the zeta function at s = 0 for a compatible
Dirac Laplacian with the Atiyah-Patodi-Singer (APS) boundary condition on
a compact manifold with boundary, which extends the result given by the
author in the Appendix of [15].
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2. Description of the Dirichlet-to-Neumann operator R(\)

In this section we are going to describe the Dirichlet-to-Neumann operator
R(A) by using the variations of Q1(A), Q2(X). To do this we extend Mcy; so
that we put Mgy := ([—1,0] x Yp.2) Uyp , Meut Uy, ([0,1] x Yp,1) and denote
by Y1 (Ya2) for =1 < u <1 the copy of Yy, := {u} x Y belonging to the same
part with Yy 1 (Yo,2) in M. Then for f € C®(Yy,1) = C®(Yy,2) choose ¢y,

Py, € C°(M_ye) satisfying
(Aﬁcut + A) ¢u =0, ¢u|Yu,1 =f, ¢u|Yo,2 =0, Pw(¢u)lw =0,
(Af, +A)u =0, dulvos =0, Wulvia =/ Pw(u)lw =0.

Then we define
(2.1)

Q) = (320 ) s = (200 b = Gra(A) + 1,00,
Qa1 = (5200 ) s = () b = Tau) + Lo,

where Q1,4 (N)(f) i= (£ ¢u) v, an0d T1u(N)(f) = = (Zu) [¥6,,- Q2a(N(S)
and ¥y, (A)(f) are defined similarly.
Now for f € C*(Y}), choose ¢(u,y) € C°(Mcy:) such that
(AMcut + )‘) ¢(u7y) = 07 ¢|Y0,1 = f? ¢|Yo,2 = 07 PW(¢)IW =0.
Then for each u, —1 < u < 1, we have

(520009 s = @) (B0 )c).

Taking the derivative with respect to u again,
(2.2)

(%¢(u,y)> v, = 2@32—()‘) (¢ y)lv..) + Qru(V) (le‘“)

o ~ ~
= (5@ + Ba)") B Dlne).
Since ¢ satisfies (Apr,,, + A) ¢ =0, (1.2) leads to
(-2 @@L + @Ay + 1) (4(,9)Iv..,)
a —_ ~
= (3500 + @) @il
which shows that

o~ 2 —~
23) (@) + TH@) = Ay £ X+ TR W) — -GN,
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Similarly, we have

~ 2 ~
24)  (Qaul¥) - %h'(u)f = WAy £ A+ TR (W) + %QM(A).

We next note that ¥y (A) (¢(w,y)|v.) = — (£ ¢(u,y)) |vo.- Taking the de-
rivative, we have

25 (5o ) Sl + 01a) (@0l ) = 0

which shows that 2% ,(A\) + ¥1,(AM)@14(\) = 0. Since £¥;,()\) and
¥, (A) are operators of the same order and @Lu(/\) is an elliptic operator of
order 1, this equality implies that ¥, ,, () is a smoothing operator. As the same
way, Uy, (A) is also a smoothing operator. Setting Ry (A) = Q1.4(A) + Q2,.(A),
we have the following lemma.

Lemma 2.1. Let Q,(A) = Q1,u(A) — Q2,u(A) + 2R/ (u). Then R,(N)? is ex-
pressed as follows.

2
2 _ —h(u) m-., 2 —TZ'L— " _ 0 -Q 2
Ru(V)? = 4 (e Ay + A+ Zn(w)? + 2h (u)) 220,() - Qu())

+ a smoothing operator.

Remark. 1t is well-known ([2], [3]) that R(A)~! = vo (A +A) " (- ® dy) and
this fact implies that R()) is positive definite for A € R, where 7o is the
restriction map to Y.

We now discuss the asymptotic symbols of %Qu(/\) and €,())?. The equa-
tions (2.3), (2.4), and (2.5) show that

0
Qua(V)? = e Ay + A = TR QL) ~ 5-Quu()

+ a smoothing operator,
(2.6)

0
Qau(W)? = €M Ay + A+ TR W)Q2u (V) + 5-Q2u(N)
+ a smoothing operator.

We denote the asymptotic symbols of Q1 (), Qa..()\), and e WAy + X as
follows.

U(Ql,u()‘))(yv 57 >‘) al,u(y, £> )‘) + aoyu(ya 3 )‘) + Oz_1,u(y,§, >‘) +ee
U(QQ,U(A))(lﬁgv /\) ~ ﬂl,u(y7€a>‘) +50,u(y7£7/\) +ﬁ—1,u(y7€7)‘) T+
o(e™™ Ay +2) = (MM +2) + e Mpi(y, &) + e po(y, €).

2
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Then the asymptotic symbols of @1 ,,())? and Q3.,,(\)? are given by
(2.7)

7(Q1u(N)?) w6 2) Z Y e 6N Dien (6 ),

wl+iti=k
4,720

U(QQ,u( ya'g )‘ Z Z idgﬁl—im(y;ga)‘) ) D;Jﬁl—j,u(y’gv)‘)a

k=0 lw|+iti=k
4,320

which lead to
(2.8)

Q1 = ﬂl,u =V e—h(u)|€|2 + )‘7
B (u)e=h 00 g2

1_ -1 _
Aoy = 507, (_dfal,u . Dyal,u +e h(u)pl - %L‘ ,(u)al,u + QW),
1 _ X —h(u) 2
Bou = 3P (—dgﬂl,u Dy +e M py + Fh ()1 Q\}—R—)l&%%)

Using the relation (2.7) we can compute the homogeneous components a1 —g
and Sk, for any k > 1, and hence the asymptotic symbols of %Qu()\) and
Q,())?. For instance, the principal symbols of %Qu()\) and Q,()\)? are given
as follows.
1% — W (u)2) e—h{(u)|g]2 122 ,—2h(u)|¢|4
or (220 — WL MOP) MNP | e MOy
ou e~ hWg2 + A (e=h()|€[2 + A)
h/(u)ze—Qh(u) |§|4
4 (e_h(u)|§|2 + }\)2.

(2.9)

oz (Qu(N)?) =

Corollary 2.2. 2Q,()\) and Q.,(\)? are YDO’s of order 0 and each homoge-
neous part of the asymptotic symbol tends to 0 as A — oc.

We next discuss the heat kernel asymptotics of R, ()\)? at u = 0. We assume
that ~(0) = 0 and denote by

),  So(A) = —2£Qu(,\)|u:0 — Qo(N)2.

(2.10) ¢ = m—zh’(O)z +
16 4 du

We suppose that as t — 0T,
o0
Tre HAv+e) Z ajt= 7,

(2.11)

Tre—t{(Av+eo+iGe(V) Z a,(N) t7FH 4+ Z br(\) t*logt.
§=0 k=1
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Then each coefficient a;(\) and a; in (2.11) can be computed by the following
formula (cf. [5], {18]). Let I" be a contour in the complex plane C defined by

(212) T = {re"loo>r>¢} U {ee®|r > ¢ > —7} U {re e < r < o0}

for sufficiently small € > 0 and oriented counterclockwise. Let us fix a finite
number of local coordinate charts covering Y, local trivializations for E, and
a partition of unity subordinate to this covering. In each coordinate chart we
denote the asymptotic symbol of (Ay +c+ %Go()\)) by

1
(2.13) o <Ay + ¢+ ZGO(}\))
~ p2(: &) +p1(y, &) + (po(¥,€) + (W, &, N) + a1 (1,6 A) + -+,

where pa(y,€) = [¢* and Y7_pi(¥,6), Y°04—;(y,€,N) are the (asymp-
totic) symbols of Ay + ¢o and $S(A), respectively. Then the asymptotic
symbol 37727 2 ;(y,€, A, 1) of the resolvent (u— (Ay +¢o + %60()\)))_1

is given recursively as follows.
(2.14)

T—2(y7§7)‘7/j’) = ( - |£|2)_1

7—-1

T WEAD) = (=PI Y SR i 6N Dy k(6 M),
k=0 |w|+l+k=7
where
pi(¥,6) for j=1,2,
Pi(%:6A) = $po(®,8) +go(y,€,2)  for j=0,
g; (¥, &, A) for j <O.

Now a;(A) (0 < j < [Z]) can be computed by the following integral (cf.
Formula (12) in [5] or Theorem 13.1 in [18]).
(2.15)

r — _m
(2227”, fY dVOI ) f]glzl de, fr‘ B +jT—2—2j (y7 &N .u’)d:u’
for 0 < ] < 5

% fY dVOI(Y) f|§|:1 de’ fOOO T—Q—m(yv 57 )‘7 _V)d’/
for j=12eZt,

a;(A) =

where d{’ is the usual surface element of the sphere |¢| = 1. Similarly, let us
denote the asymptotic symbol of (u— (Ay + ¢0))”" by

(2.16) a(( —(Ay + )" ) 25_2 (6, ),

where §_o_;(y,§, 1) is defined recursively by the same formula as (2.14). Then
a; can be computed by the integral (2.15) with the integrand §_o_;(y, &, p).
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We here note that

(217) r—2—j(y7§,)\,ﬂ) = 5—2—j(y7§7/'l') + F—2—j(y7§:A7p’);

where 7_5_;(y,&, A, u) tends to 0 as A — oo. In particular, r_2(y,& A, u) =
0_2(y,&, ). Then we have the following result.

Lemma 2.3. Each a;(A), 0 < j < [Z], has an asymptotic expansion for
A — o0 of the following form:

a;(A) ~ a; +Zaj7§)\‘§.

In particular,

ap(A) =a0 and lim a;(A) =a;, (1<j< [%])

A—o00

Proof. In view of (2.14), r_o_;(y, &, A, 1) can be expressed by

T—Z—j(y>§:)‘7ru’ Z fk Y £ M)

k>0 (1§12 + /\) :

where fi(y,€, i) is a homogeneous polynomial of degree k — 2 — j with respect
to £ and p. Hence, (2.15) shows that for 0 < j < %,

11 i [ i
a;(A) = ;mm/},dvom’)/l G / fe(y, &, wdu,

from which the result follows. The case of j = Z can be treated in the same
way. O

3. The main results and their proofs

We begin this section with the following lemma, which is straightforward
(cf. 8] or [19]).

Lemma 3.1. Let P be an elliptic WDO of order > 0 on a compact manifold
and {o;}, {B;} be increasing sequences with By > 0, and tending to co. Suppose
that

o0 o0
Tre~*f ~ Zajt"‘j + ijtﬁj logt for t— 0",
7=0 =0
Then, as A — oo,
log Det (P + A)

oo

+ ) bT(B;) - AP log A — Z bj/ g% te " logzdz - A% + O (e7).

7=0 0
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In particular, the constant term does not appear and the coefficient of log A is
(¢p(0) + dim kerP).

We next consider the asymptotic expansions of
logDet (Anr + A, Anreyevo + A)
and log Det R(\) as A — oo. Let K be a collar neighborhood of Y whose closure

is a compact subset of M. Then it is shown in [1] (see also [3]) that for some
positive constant C,

| Tr (1M—K (e_tAM — e_tAMC“f"YU) 1M—K) | < 6_%.
It is a well-known fact that for some real constants wj,
o0 o
Tr (1K (e_tAM — e_tAMcut’"'O) 1K) ~ ijtJT, ast — 0T,
=0
Hence, for ¢t — 0,
e 7 —
(3.1) Tr (e_tAM —e_tAMcumO) ~ ijt] z,
§=0

where dim M = m+ 1. This fact together with Lemma 3.1 yields the following
result.

Lemma 3.2. As A — oo, we have the following asymptotic expansion.

log Det (Apr + A, Aoy o + )

- d (T(s — =5 m=j
NZ(d‘( ) ))A

- I‘(S—— mT_Z) m=i —cA
+j§0w]' (Ts) 7OA lOg)\+O(€ )

In particular, the constant term does not appear. If M is compact or com-
plete with 0.ss(An) having a positive lower bound, the coefficient of log A is
C(0; Anr, Ay, o) + dimkerApy.

The above lemma shows that —mg in (1.6) is, in fact, the zero coefficient in
the asymptotic expansion of log DetR(A} as A — oo. If dimY is odd, this zero
coefficient is known to be zero ([7]) and hence we need to discuss the case of
dimY even. By Lemma 2.1 and Lemma 3.1 with (2.11) we have the following
result.
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Lemma 3.3. Let m be the dimension of Y. Then
log DetR(A)

1 d (T(s— 2 +j) 2—j
— 10g2'C(AY+CO+%GO(>‘)+’\)(O)_ 52@]()‘)% (Tﬁ) _0)‘2 J

3=0
[

+1 ]
24
J

o3

I(s—F+7) m_ e
Sy (2T 2 -log A+ 0 (A), (¢>0),
:0“()< o )SZOA gA+0(A9), (c>0)

where
if m is odd,

0
C(AY+CO+%GO(A)+)\)(0) = { ]%:OK(__’}lLJ a]()\))\z -J 'Lf m 1;5 even.

Specially, if dimY is even, Lemma 3.3 together with Lemma 2.3 leads to the
following corollary.

Corollary 3.4. Let m = dimY be even. Then logDetR(\) has the following
asymptotic expansion for A — oo.

log DetR(\) ~ Zp])\ Rt qu,\ 7 log \,

On the other hand, let P(n) be a non-negative classical elliptic ¥DO of
order k with parameter 7 of weight x (x > 0) on a d-dimensional compact
closed manifold X. We refer to [2] or [18] for the definitions. Suppose that the
asymptotic symbol of P(7) is given as follows.

a(P(n)) Zpk —i(m,z,8),

where for 7 > 0, px_;(7*n,z, 7€) = 7% Ipy_;(n,z,£). Then it was shown in
the Appendix of [2] that log Det P(n) has the following asymptotic expansion
as |n| — oo.

d .
(32) log DetP(n Zﬁ;lnl + > 65[n|* log|n],

=0
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where each x; and 6; can be computed in terms of the symbol of P(ﬁzﬂ)

Specially, x4 and 6y can be computes as follows. Let us denote the symbol of
(1= P(m) ™" by

o0

0((N—P(n))4) w18 E) ~ > ks, 3, 6).

J==0

We define Jy(s, T’,?]—‘,T) by

3.3 J, ‘ﬁ" €ry = "}*“ TP g ﬂ“ 3 d 3
( ) d(87 ‘?7[71’> o /];ddg/r“u Tk d(ﬂ’a inlax 6) L

where I' is a contour in C defined in (2.12). Then,

A1 D veren)
- d*wQ@f@”“T’”]@%”’
0= Gy 400 ) 0l ) oo

If the symbol of P(n) satisfies the following property

(3.5) Pr-i(m 2z, =€) = (=1)pr—j(n,,8),

and d = dim X is odd, then Jd(s,ﬂ—l,w) = 0 and hence kg = 0y = 0. It
is known that the Dirichlet-to-Neumann operator R(A) is a classical elliptic

WDO of order 1 with parameter A of weight 2 and satisfies (3.5) (¢f. [7]). This
fact with Lemma 3.2 leads to the following result.

Corollary 3.5. Suppose that either M is compact or oess(Anr) has a positive
lower bound. If dim M is even, then

C(0; Angy DBaayy, ) + dimkerAy, = 0.
Since —mg in (1.6) is the zero coeflicient in the asymptotic expansion of
log Det(R(\)),

Corollary 3.4 leads to the following result, which is the main result of this
paper.

Theorem 3.6. Let (M, g), Mcy: be as above and g, Ay be given by (1.1),
(1.2) on N_y1. Suppose that dimM = m + 1, ¢ = %h’(())2 + Zh"(0) and
| = dimker(Ay + ¢p). Then the constant mp in (1.6) is the following.

(1) If m is odd, then mp = 0.

(2) If m=2, then mo = —10g2 - ({(ay+e0)(0) +1).

(3) Im =4, mo=—1og2" (Cay+a(0) +1) - (log2 — 3) T ((0) -~ W(0)?),
where vol(Y') is the volume of Y.
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(4) Generally, if m > 4 and even, then we have
™= —Pm

= —1log2- (C(ay+e)(0) +1)
m_q

L (-1% < 1( 1 1 ))
-3 _ain i (log2 — S (144 +=——]).
Z (m_ )! 1z I g 9 2 o

Proof. The assertion (4) follows from Corollary 3.4. It’s enough to prove the
assertion (3). If m = 4, the assertion (4) shows that

1
mo = —1log2- (Cay+c)(0) +1) + a1 (logZ - 5) :
By (2.9), (2.15), and Lemma 2.3, a; 1 can be computed as follows. We note
that
T-—2-—1(ya£7 )‘7/1') = 5—2—1(%57#)7
roa-2(y, 6,0 1) = 8_2-2(y, &, 1) — (b~ 161°) 7 - 00(y, €, A)

_ ay—2f 1(R"(0)—R(0)?) € 5 H(0)%)¢]*
= (5_2—2(?!;5,#)_(“— |£I ) (_Z |€|2+)\ _E(I£|2+)\)2>‘

Then by (2.15) we have

B () = gy — LYolY) vol($) (1H"(Q) ~H(©)? | 5 H(0)?
1A) =01 -3 1674 4 (A+1) 16 (A + 1)2
vol(Y) (1 1 1 / , ]
1 Sy (1 (R(0) = H'(0)?) 5 + 55 (—4h"(0) + 9H'(0)?) 35 +- ..),
which shows that a1, = — & (A”(0) — A(0)?). This completes the proof of
Theorem 3.6. 2

Remark. Replacing Aps and Ay, ~, by Aa+v and Apg,,, 4, +v for v € RY,
we can rewrite (1.6) as follows.
(3.6)
(%]
logDet (Ap + v+ A, Apyvo Y+ A) = m; ()N + logDetR(v + A).

J=0

N3

Since Ay + v, A, v + v, and R(v) are invertible operators, we have
(3.7) logDet (Ap +v, Ay +v) = m{v) + logDetR(v),

where mo(v) is the polynomial part in (1.6). Similarly, we can express mo(v)
in terms of coefficients in Lemma 2.3. For instance, mo(r) = 0 when dim M is
even.

cut,Y0

We next discuss what data determines my. We consider the collar neighbor-
hood N_1; of Y and denote by Ay_, ,, An_, ,, An,, the restrictions of Ay
to N_11, N_19, Nyg,1. We impose the Dirichlet boundary condition on each
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boundary and denote the realizations by Ax_, | oy AN_, 0,705 DNo,1,70- 10 this
case (1.6) can be written by
(3.8)
logDet (An_, , 4o + A) — logDet (An_, gy + A) — logDet (Ang, yo + A)
53
= Y ;M +logDetRy _,,(N),
j=0

N

where Ry_, , (A) = Qn_, ,(A) +Qn, (A) is defined as follows. For f € C(Y),
choose ¢ € C*(N_1), ¥ € C™(Ny,1) such that

(AN_ o+ A)¢=0, (Ang, +A) ¥ =0, |y, =¥y, =0, ¢ly, =¥lv, =F
We define

(39) QN——LO (}‘}f = <67L¢) ’Yo’ QN0,1 (A)f = - (aqu/)) IY()'

Then Qn_, ,(A) and Qx, , (A) satisfy the equations (2.3) and (2.4), respectively,
which shows that Qn_, ,(A) (@n,,(A)) has the same asymptotic symbol as
Q1(A) (Q2())) and hence R(A) — Ry_, ,(\) is a smoothing operator. This
fact shows that log DetR(A\) and logDetRy_, ,(A) have the same asymptotic
expansions as A — co. In particular, they have the same zero- and log A-
coefficients, which leads to the following result.

Corollary 3.7. The coefficients p,, and q,, in Corollary 3.4 -are determined
by the data on a small collar neighborhood of Y.

4. The value of relative zeta functions at s = 0

Theorem 3.6 gives some informations about the value of relative zeta func-
tions at s = 0, which we discuss in this section. Corollary 3.4, Theorem 3.6,
and Corollary 3.7 lead to the following result.

Theorem 4.1. Let (M,g), Mo, be as above and g, Ay be given by (1.1),
(1.2) on N_y1. Suppose that dmM =m+1, ¢ = %h’(O)2 + Zh7(0) and
I = dimker(Ay +¢p). We assume that either M is compact or complete with
Oess(Apr) having a positive lower bound. Then

(1) If dim M is even, ¢ (0; Ans, Anry,yo) + dimkerAgs = 0.
(2) If dim M 1is odd,

. 1 (—1)E
C(0; Anr, Aptoys o) + dimkerAy, = 3 ; mﬂj,%_j,

which is determined by the data on a collar neighborhood of Y.
(3) Ifm =2, C(0; Am, Anteye o) +dimkerAns = 5 (Cay +¢(0) +1).
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(4) Ifm=4,
¢(0; Anr, Ay, ) + dimkerA g
1
VOI(Y) (hll(o) _ hl(())?)) .

Remark. Since the coefficient 6y in (3.2) vanishes when dimY is odd, the as-
sertion (1) holds generally.

As an application of Theorem 4.1 we consider the case of h(u) = 0, i.e.,
the product metric on N_;; and Apy|y_,, = —82 + Ay. Then it is known
that mo = ~log2 - (¢a, (0) + dimkerAy) and it is not difficult to check that
ajm_; =0for 1 <j <2 —1(cf Lemma 2.3), which gives the following
result.

Corollary 4.2. Suppose that M is a compact closed manifold and the metric
g is the product one on N_1,1 so that Ay = —85 + Ay on N_j1. Then

(1) ¢(0; Anry Apyysyo) + dimkerAy, = % (Cay (0) + dimkerAy ).
(2) If dim M is odd, {a,,, ., (0) = —3 (Cay (0) + dimkerAy).

(3) If dim M is even, Ca,,, . (0) = 3 (CAIW1 (0) + dimkerAMI), where M,
1s the double of My and AMI s the natural extension of Any, to M.

Let M; be a compact manifold with boundary Y and M; o, = M7 Uy [0, 00) X
Y. We give the product metric on the cylinder part of My o so that on the
cylinder part Aps, . = —82+ Ay. Suppose that u; > 0 is the smallest positive
eigenvalue of Ay and we denote the scattering matrix by

S(s) : ker Ay — ker Ay, |s| < V1.

It was shown in [14] that for t — oo

(4.1) 'I‘r (e_tAMl,oo —_ e—t(_ai+Ay)[0,oo)XY,’YO) = bO +0(t_p))

where by = dimker Ay o + 3 (Tr S(0) + dimker Ay) and p > 0. Then we
have the following result.

Corollary 4.3.
¢(0; Ansy o, (02 + Ay)

[0,00))(Y,’)/Q)

= CApry o (0) —dimker Ay o + % (Cay (0) + dimker Ay) — by
1 1
= (A, 4 (0) — 2dimker Apy,  + §CAY 0) + 3 dimker (Id+ S(0)).

We next discuss the case of the Neumann boundary condition. We still
assume the product metric and product structure near the boundary. Let N be
the Neumann boundary condition imposed on the boundary of M; and Ay, ,m
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be the realization. Then it can be shown by the method presented in [10] (cf.
[16]) that

3

[z
(4.2) logDet (Ans, o + A) —logDet (Ang, 4, +A) = Z ar X +log DetQ:1(N),
k=0
where Q1 () differs from /Ay + X by a smoothing operator and hence log Det
of these two operators have the same asymptotic expansions. Since the coefli-
cient of log A in the asymptotic expansion of log Det (\/Ay + )\) is
1
2
this fact together with Corollary 4.2 leads to the following result.

|

(Cay (0) + dimker Ay),

Theorem 4.4. Let (M, g) be a compact manifold with boundary. We assume
that the metric g is the product one and Ay = —82 + Ay near the boundary.
Then

(1) Cap, 2(0) +dimker Ans, m — Cagy, .o (0) = 3 (Cay (0) + dimker Ay).
(2) If dim M is odd,

1
Cap, = (0) +dimker Ay o = 1 (Cay (0) + dimker Ay).

(3) If dim My is even, {a,,, «(0) + dimker Apsy ;v = Cagy, o, (0)-

Finally, we discuss the value of the zeta function associated with a compati-
ble Dirac Laplacian with the Atiyah-Patodi-Singer (APS) boundary condition
on a compact manifold with boundary. Let (M,g) be a compact oriented
(m + 1)-dimensional Riemannian manifold and E — M be a Clifford module
bundle. Suppose that Y is a hypersurface of M such that M — Y has two
components whose closures are denoted by My, M. We denote by M.y the
compact manifold with boundary obtained by cutting M along Y as before,
i.e., My, = My Uy M. We choose a collar neighborhood N_;; of ¥ which is
diffeomorphic to [~1,1] x Y and assume that the metric g is the product one
on N_; 1 and the bundle E has the product structure on N_; ;. Suppose that
Dy is a compatible Dirac operator acting on smooth sections of F, having the
following form on N_;

D!‘v’f = G(au + B)>
where G : E|y — E|y is a bundle automorphism, &, is the outward normal
derivative to M1 on N_q 1 and B is a Dirac operator on Y. We further assume
that G and B are independent of the normal coordinate u and satisfy

G = -G, G? = -1, B* = B, GB = —BG,
dim (ker(G — i) NkerB) = dim (ker(G + i) NkerB).
Then we have, on N_1 1, the Dirac Laplacian

D}, = -0, + B*.

(4.3)
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We also denote by Dy ,, Dy, (2 = 1,2) the extension and restriction of Dy to
My+ and M;. We denote by I (II-.) the orthogonal projection onto the space
spanned by negative (positive) eigensections of B and by o : kerB — kerB a
unitary operator satisfying

O'GZ—GO', 02=IdkerB~
We define the generalized APS boundary condition Il ,-, Il ,+ by
1 1
H<,o— =1l + 5(1 - 0)|kerBy H>,cf+ =1IIs + E(I + U)|kerB

2 2 . .
and denote by Dasyn_ _» Diy, (DMz,H>,(,+7 DM27H>,U+) the realizations

<, 0

of Dy, DJQVIZ, with respect to the boundary condition I ,- (I ;+). Then it
was shown in [10] that

log Det (D12\41,H<’G_ + /\) —log Det (D3, ., + )
3

= a1,; X +logDet (T o+ (Q1(A) + |B)) I, 5+)
Jj=1

log Det (D?\42,H>,g+ + )\) — log Det (D%/Il,wo +2)
(%]

= Z@,j)\j +log Det (M. ,- (Q2() + |B) U 5-), 7
j=1
where Q1()\) and @Q2()\) are defined by the same way as in (1.4). We now
consider the first equation of (4.4) and we can treat the second equation in

the same way. As before, log Det (D%/h,n< + /\>, log Det (D%/Im0 + /\), and

(4.4)

log Det (IL, ,+ (Q1(A) + |B|) I ,+) have asymptotic expansions for A\ — oo.
Moreover, the coefficients of log A in the asymptotic expansions of

log Det (Djz\,lhn< 4+ )\)

and log Det (D3, o +) are ((D?MLHW_(O) + dim kerDﬁ,IhHm) and (Dﬁlm(O).
Now let us consider the asymptotic expansion of

log Det (H>7g+ (@Q:1(N\) + |B|)'H>,a+) .
We note that
log Det (I, ,+ (Q1(A) + |B|) 1L, ,+)

— —logDet (nq,_ (\/32 Ny |B|) n<,a-)
+logDet ((v/BZ+X+|B) +1L, o+ (@) - VB + ) T o+ ).

It was shown in [9] that

Q:(A) = VB2 + A+ asmoothing operator, i=1,2,
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which shows that log A-coefficient in the asymptotic expansion of
log Det (I o+ (Q1(A) + |B) 115 o+)

is the same as that in the asymptotic expansion of % logDet (v/B2 + A+ |B).
We compute the log A-coefficient in the asymptotic expansion of

log Det (VBQ FA+ 1B|)

as follows.

Lemma 4.5. For 1 <k € Z let us denote fr(s, ) by

[ BT k,—t(B24+X)
. T s P i i
Fuls, ) 1**(3)/0 T (B )d

Then the coefficients of log X in the asymptotic ezpansions of fr{0,)) and
=fi.(0, ), as A — oo, are zero.

Proof. We first note that Tr (|B]k e“th) has the following asymptotic expan-
sion for ¢ — 0" (Theorem 2.7 in [4]).

i j—m—k e -
(45 T (IBlke*”B> ~ STpR e §:<c§-k) 1ogt+d§."’>)tﬂ.
=0 =0

Then direct computation shows that the coefficients of log A in the asymptotic

expansions of f(0,A) and —}(0,A) for A\ — oo are zero and bg,{f') , Tespectively.
On the other hand, we note that

1 e stk 2
(4.6) Go1(s) = e | (B a
2

The equation (4.5) shows that the RHS of (4.6) has a simple pole at s = 0 with
b o
residue fi—lz-g; Since (g|(s) has a regular value at s = 0, this fact implies that

2

each b = 0 for k > 1, which completes the proof of the lemma. O
Lemma 4.6. The coefficient of log A in the asymptotic expansion of
log Det ( B2+ X+ §B|)

for A — o0 s § ((p2(0) + dim kerB).
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Proof. We first note that

BT+ B)) (9)
I'(s) Jo

(—/ e lz 'I‘r (VB2+3-1B) e /B ) a4

i qlri e+ (VBT 4 X - |Bl) e 2VE) g
We now set
Gls,A) = ﬁ /oot”q—l Tr ((\/32 +A— IB|)qe_2t\/Bz—+/\) dt.
0

In case of ¢ = 0 the coefficient of log A in the asymptotic expansion of —(}(0, )
for A — oo is 1 ({2(0) + dimkerB) (¢f Lemma 3.1). For ¢ > 1,

q

Ga(s,2) = D (-1)F (Z) ﬁ /Omt“q—1 T ((\/32—+A)H [B|’°e‘2t‘/Bz—+>‘> dt

k=0

qd
_s— I(s+q) 1 *° s 4 B?
= 9—5—¢ —1)* <q) 1y |B|k t(B“4+X) dt.
,;)( v I(53E) T(s) Jo ( )
Then Lemma 4.5 shows that each log A-coefficient of —¢(0, A) is zero, which
completes the proof of the lemma. O

We can say the similar assertions for D%/IQ’ The comparison of log A-

1'[>’a+ °
coeflicients in the asymptotic expansions of (4.4) and Corollary 4.2 leads to the
following result.

Theorem 4.7. Let M, M and M, be as above. We denote dimkerD%/[,
dim kerD?\41,n<,a_7 dim kerD%/IZ’HNr+ by lar, Ly 1t vy ., Tespectively.

<, 0=’
Then
(1) Co3, O +ham, - o, (0) = §((52(0) + dimberB).
(2) IfdlmM1 is odd, CDz . (0)+ZM1, - =0
<,
(3) If dim M; is even, §D2 w O+bnn_ o = Cpz, (0).
<, 1:7Y0

(4) (c%(o>+zM)—(<%n<, O+tun, ) = (63, ©+buan, .. ) =0.

Remark. (1) The second assertion was proved earlier in the appendix of [15]
by the author.

(2) The zeta-determinant of a compatible Dirac operator is defined by
(4.7

DetDy = ¢ 03 0% (Co3, @20 @) _ 5 rpa % (<og, - )
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where np,, (0} is the eta-invariant for Dys (¢f. [17]). The gluing formula for the
eta-invariant of a Dirac operator with respect to the APS boundary condition
is given in [6] (or [11]) and the gluing formula for the zeta-determinant of a
Dirac Laplacian with respect to the APS boundary condition is given in {10]
(or [11]). Hence, the assertion (4) together with these results completes the
gluing formula for the zeta-determinant of a compatible Dirac operator.

In view of Corollary 4.3 we conclude this section with the computation of
the value of relative zeta function for Dirac Laplacian with the APS boundary
condition on a manifold with cylindrical end. As before, we denote by M; o :=
MUy [0,00) x Y and by Dy, ., the natural extension of Dy, to Mi . Then,

((s, DYy, > (=0 + Bz)[(},oo)xY,H>,G+)
= ((s, jD?\/IlOo ] (—83 + BQ)[OYOO)XY,’YO)

(4.8) + (s, (=03 + B 0,00y xv 700 (=0 + B0 ooy xvar, )
1 D(s+1)
= <(57D?\/[1,oo7 (—83 + B2)[O,oo)x)’,70) - 4\/7? P(S + i} CBZ(S)'

Here we used the fact (¢f [10]) that
(4.9)
1 T(s+3)
2, p2 2 _ 2
¢(s, (=0, +B )[Opo}fo‘./oa(_au'J"Bz)[Opo)xY‘,H%gJ,) S LA B2(8).

Since dimker (Id+ S(0)) = $dimkerB on a manifold with cylindrical end
(112}), Corollary 4.3 together with (4.8) yields the following result.

Corollary 4.8.
C(O’ D%JLOO > ("_ai + BB)[O,OO) % Y,I1

>, 07 )
1
= Cpz, (0} —2dim kerD%;, _ + 7 e (0) + dim kerB).
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