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PROJECTIONS OF BOUQUET GRAPH WITH TWO CYCLES

YoUNGSIK Hun

ABSTRACT. In this paper we investigate the projections of bouquet graph
B with two cycles. A projection of B is said to be trivial if only trivial
embeddings are obtained from the projection. It is shown that, to cover
all nontrivial projections of B, at least three embeddings of B are needed.
We also show that a nontrivial projection of B is covered by one of some
two embeddings if the image of each cycle has at most one self-crossing.

1. Introduction

Throughout this paper we work in the piecewise linear category and graphs
are considered as topological spaces. Let G be a graph with finitely many
vertices and edges. Let f, f : G — R3 be embeddings of G into R3. f is said to
be equivalent to f’, denoted by f ~ f’, if there exists an orientation preserving
homeomorphism A : R® — R3 such that ho f = f’. Especially we say that f is
trivial if f'(G) C R? x {0} C R3.

A continuous map ¢ : G — R? is called a projection of G if the multiple
points of ¢ are finitely many transversal double points away from the image of
vertices. Let m : R® — R? be the map defined by 7(z, v, z) = (x,y). We say that
@ is a projection of an embedding f, if there exists an equivalent embedding f’
such that ¢ = mo f’. In fact, if we determine which strand passes over the other
strand on each double point of ¢, then a diagram representing an embedding
of G is obtained as depicted in Figure 2. A projection is said to be trivial, if
only trivial embeddings are obtained from the projection.

A set £z of nontrivial embeddings of G is said to be elementary with re-
spect to projection if it is minimal among sets satisfying a property that every
nontrivial projection of G is a projection of at least one element of Eg.

Note that although G may have two different elementary sets, the cardinal-
ities of such sets are same. The cardinality of elementary set is dependent on
the topological type of graph. Let K be a cycle and L be a disjoint union of
more than one cycles. Here, a cycle means a graph homeomorphic to a circle.
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FIGURE 1. O3 graph, handcuff graph and bouquet with two cycles

In [5] K. Taniyama showed that the trefoil knot found in Figure 2-(a) is the
only element of £x. He also showed that |£| = 2 [6]. In [2] it was proved that
I€e,,| = m for m > 3, where ©,, is the graph consisting of two vertices and
m edges between them. On the other hand, |£g] = oo, if a graph G contains
a subgraph homeomorphic to handcuff graph [8]. Here, the handcuff graph is
a graph consisting of two disjoint cycles and one edge joining them. These
previous works on elementary sets of small graphs were utilized to study the
relation between the combinatorial types of graphs and their projections [3, 4].

In this paper we investigate the elementary set of another small graph B
which is the bouguet with two cycles. Precisely, B is a graph which consists of
two cycles C; and Cz sharing one vertex v as shown in Figure 1. The authors
of [8] conjectured |Eg| = 2. But the first result of this paper is

Theorem 1. No proper subset of {B1,B2,B3} is elementary with respect to
projection of B.

By, B2 and B3 will denote the embeddings of B which are represented by
the diagrams in Figure 2-(b). Theorem 1 implies |€g| > 3.

A nontrivial projection of B is said to be almost trivial if the restriction on
each cycle is a trivial projection of circle. For a projection ¢ of B, a double
point d will be called a self-double point of p|c, if ¢~1(d) C C;.

As an effort to determine the cardinality of £z, we give two more theorems
in the below.

Theorem 2. If a nontrivial projection of B is not almost trivial, then it is a
projection of B;.

Theorem 3. An almost trivial pfojectz’on @ of B is a projection of By or Bs,
if each ¢|c, has at most one self-double point.

Therefore, for the complete determination of the cardinality of £, we have
only to investigate the case that ¢ is almost trivial and some ¢|c, has more
than one double points. This remaining case will be dealt with in a forthcoming
paper [1].

The rest of this paper will be devoted to the proofs of Theorem 1, 2 and 3.
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FIGURE 2. (a) A projection of circle and a diagram represent-
ing the trefoil knot. (b) Projections of bouquet graph with
two cycles and diagrams representing the embeddings B1, B2
and B3

2. Proofs of theorems

Proof of Theorem 1. Let a, 3 and ~y denote the first, second and third projec-
tion of B in Figure 2-(b), respectively. And let R(a) be the set of all nontrivial
embeddings obtained from a.

The projection o has exactly three double points. Therefore, from a, we
obtain eight embeddings of B among which only B; and its mirror image are
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FIGURE 3. Removing a separating nugatory point and a ver-
tex nugatory point

nontrivial. Note that the two embedded graphs contain the trefoil knot or its
mirror image. In 3, the image of each circle is a trivial projection of circle,
for it has no self-double point. Therefore R(a) N R(B) = @ and similarly
R(a)NR(y) =0.

The number of nontrivial embeddings from g is four, including B2. And ~
produces thirty two nontrivial embeddings of B, including Bs. To complete
the proof, we will show that R(3) N R(y) = #. For this purpose, we utilize
a polynomial invariant of embedded graphs in R3. In [9] Y. Yokota defined a
family of polynomial invariants based on the linear skein theory. The invariants
in the family are determined by choosing weight system. Among them, let

Z : {embeddings of B} — Z[t,t™!]

be the polynomial invariant determined by the constant weight 1. Note that if
two embeddings f and f’ are equivalent, then Z(f) = Z(f’). And Z(f) = 1if
f is trivial. The width of a polynomial is defined to be the difference between
the maximal and minimal degrees of the polynomial.

We traced the widths of polynomials of all nontrivial embeddings from 3
and v. The width of Z(Bs) is 12. Also the polynomials of the other three
nontrivial embeddings from 4 have width 12. The nontrivial embeddings from
7 have polynomials with width at least 14, which implies R(8)NR(vy) =0. O

For the proof of the other two theorems we introduce some necessary defi-
nitions. For a projection ¢ of B, let ¢; : [0,1] — R? be a parametrization of
the curve ¢(C;). Then ¢;(0) = ¢;(1) = ¢(v). If d is a self-double point of ¢|c,
then we can choose t; and ¢2 so that d = ¢;(t1) = @;(t2) and ¢; < to. We call
@i([t1,t2]) a loop on p(C;) based at d.

A separating nugatory point is a double point separating ¢(B) into two
disjoint parts. A vertex nugatory point is a double point near which a local
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FIGURE 4. Trivialization of a projected arc

picture looks like the left side of Figure 3-(b). If d is a vertex nugatory point
then we can find two subarcs ¢; and ¢z of ¢(B) such that dc; = {¢(v),d} and
there is no double point on the interior of each ¢;. We call ¢; Ucy a bigon near
d. A projection will be said to be reduced if it has no nugatory point. Suppose
that ¢ has a nugatory point and 1 is a projection obtained by removing the
nugatory point as illustrated in Figure 3. If ¢ is a projection of an embedding
f, then we can isotope f so that it is projected onto ¥, that is, v is also a
projection of f. Therefore, in the proofs of the theorems, we assume that ¢ is
reduced.

Let 9 : [0,1] — R? be a projection of the unit interval. Take a function
h :[0,1] — [0,00) so that h is strictly increasing on [0,1 — €], decreasing on
[1 —¢,1] and A(0) = h(1) = 0. Then the map f : [0,1] — R® defined by
f(t) = (¥(t),h(t)) is an embedding of the unit interval for a small enough e.
And f can be isotoped to some f’ with boundary fixed so that 7 o f’ has no
double point. We call f a trivialization of ¢ into R%. The trivialization into
R? is defined similarly by taking h into (—oo, 0].

Proof of Theorem 2. Let ¢ be a projection of B which is not almost trivial. We
may assume that the restriction of ¢ on the cycle C} is a nontrivial projection
of circle. Then l¢, is a projection of the trefoil knot [5]. Select the over/under-
passing on each self-double point of ¢(C1) so that the resulting embedding of
C; be the trefoil knot in R? x [0, 00). Trivialize the closure of ©(Ca) — N(p(v))
into R? , where N((v)) is a small neighborhood of (v) in ¢(C3). And put the
rest of ¢(Cs) into R? x {0}. Then the resulting embedding of B is equivalent
to Bl. ]

Remark. Let ¢ be a parametrized projection of circle. In [5] it was shown that
1 is a projection of the trefoil knot if and only if there exists a double point d
which is not separating-nugatory, that is, for some £, < to

b(tr) = 9(t2) = d, P([tr,t2]) Np([0, 1) U (£2,1]) # 0.

If every double point of ¢ is separating-nugatory then 9 can be reduced to a
trivial projection with no double point.

Proof of Theorem 8. Let ¢ be an almost trivial projection of B. Then Theo-
rem 3 easily follows from the lemmas in the below. O
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Lemma 4. If each p|c, has no self-double point, then ¢ is a projection of Ba
or Bs.

Lemma 5. If ¢|c, has no self-double point and p|c, has only one self-double
point, then @ is a projection of By or Bs.

Lemma 6. If each ¢|c, has only one self-double point, then ¢ is a projection
Of Bz or B3.

In the rest of this paper we will prove the lemmas.

3. Proofs of lemmas

To prove each lemma, considering the conditions given in the lemma, all pos-
sible shapes of ¢(B) will be listed. And we show that the desired embeddings
B; or B3 can be obtained from each shape.

Proof of Lemma 4. Let w;; and w;y be the first and last double point along
the orientation of ¢; for 4+ = 1,2. Since ¢ is assumed to be reduced, it has
no vertex nugatory point and therefore all these four points are distinct each
other. Considering the order in which the four points appear on each p;, we
have four cases in the below.

#1 P2

Case 1 | wiiwziwoewiz | WaiwWi11Wi2We2
| Case 2 | wiiwowoowr2 | W WiaWr1Wa2
Case 3 | wiiwoawoi w2 | W Wi W12Wa2
Case 4 | wiwpwn w2 | waiwiowi 1w

If we reparametrize s so that the orientation is reversed, then case 3 and 4 are
identical to case 2 and 1, respectively. Now we consider how o intersects 1
in each of case 1 and 2. Without loss of generality, - is assumed to penetrate
1 through ws; from the unbounded component Dz of R? — ¢(C)) into the
bounded component D;.

Case 1: Suppose @2 penetrates ¢, through w5 from D; into D,. Consider-
ing that there is no self-double point, we know that o penetrates ¢; through
wyy from Dy into D;, and through wys from D; to Dy. The situation is il-
lustrated in the left side of Figure 5-(a). In the figure a subarc is drawn by a
dotted curve, when we don’t know the relative position of the subarc precisely.
Choose tl,tQ,ts and ts SO that Lpz(tl) = W21, (pg(tz) = W11, (pz(tg) = Wi2 and
©2(t4) = waq. Then, it holds that t; < ts < t3 < t4. We assume that ¢ is put
into the plane R3 = R? x {0}. Now trivialize each of ¢2[0,t1+€], @a[ta —¢, t3+¢]
and @s[ts — €, 1] into ]Ri. Let the other two subarcs of s be trivialized into
R3. Keep ¢; into R as it is. Then we obtain B; as illustrated in the right
side of Figure 5-(a). In the figure, a subarc that should be trivialized into R3
(resp. R3) is represented by a black thick (reps. gray) curve. A black thin
curve represents a subarc that should remain in R3.
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FIGURE 5. Realization of By and Bz from a projection with
no self-double point

If ¢y penetrates @1 through wis from D into D, then 2 should pass
through woy from Dy to D1. We can also obtain By as illustrated in Figure 5-
(b).
Case 2: In this case, it is easy to know that 5 should penetrate ¢, through
wig, w11 and wee from Ds into Dy. Therefore By is obtained as illustrated in
Figure 5-(c). O

Proof of Lemma 5. Let w be the self-double point of x(Cs) and [ be the loop
based at w. Let ¢ be a projection of B such that

¢’ (C1) = p(C1), ¢'(C2) = closure of w(Cs) — 1.

Note that each of ¢/(C;) has no self-double point. Let D; and D; be the
bounded and unbounded components of R? — ¢/(C}), respectively.
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Case 1: Suppose that ¢’ is a nontrivial projection of B. Then, by Lemma 4,
an embedding B equivalent to B2 or B3 can be obtained from the projection.
Now we will determine over/under-passings at the double points of ¢ so that
the resulting embedding is equivalent to B. Consider ¢/(B) as a subspace of
w(B). At each double point between ¢(C;) and p(C2) — I, set the over/under-
passing in the same way with ¢’. At each double point between ¢(C4) and I,
let | pass over p(C1). If we isotope the resulting embedding to reduce the lift
of | as illustrated in Figure 6, then B is obtained.

Case 2: Suppose that ¢’ is a trivial projection. Then, by Lemma 4, ¢’
should not be reduced, that is, have nugatory points, all of which should be
vertex-nugatory.

If there exist two vertex nugatory points in ¢’, we may assume that the
first (also the last) double points of the parametrizations ¢} and ¢4 coincide
with each other, by reversing the orientation of ¢} if necessary. Select ¢; and
s1 (resp. t2 and s2) so that ¢|(t1) = ph(s1) (resp. ¢i(t2) = @h(s2)) is the
first (resp. last) double point. Now we consider how the loop ! should be
added to ¢'(B) so that the resulting image be identical with ¢(B). Because ¢
is reduced, ¢45(s;) and 5 (s2) should not be vertex nugatory any longer after
adding [, which implies that ! should have nonempty intersection with each
bigon near ¢5(s1) and ¢4 (s2). The base point w of ! may be located on one of
©5(0, 51), Y5(s1, 82) or Yh(s2,1). According to the positions of w and the subarc
@h(s2,1), we can list possible shapes of ¢(B). Considering R? as a subspace
of the sphere S? and reversing the orientation of ¢}, all possible shapes can
be reduced to three shapes, from each of which an embedding equivalent to
B is obtained as illustrated in Figure 7. Note that ¢4(0, s1) can be assumed
to be contained in the unbounded component D; without loss of generality.
In Figure 7-(b) it looks as if the base point w is located in D;. Even in the
case that w is located in D3, we obtain the desired embedding by the same
trivializations.

When there is only one vertex nugatory point in ¢’, we may also assume that
the first double points of ¢} and ¢} are identical with each other. Note that if
there exists only one double point in ¢’, then four bigons exist in the projection
and there is no way to add [ so that ¢ is reduced. Let ¢} (t1) = ¢5(s1) be the
first double point. And let ¢f(t2) = @4(s2) be the last double point of 5.
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Then we can select {u;;} such that
t2 <un <wuiz, U <ug: < Sz,

P1(u) = y(uze) and @ (ui2) = @h(un)

because there should exist only one vertex nugatory point. Note that 5(0, 1)
can be assumed to be contained in D, without loss of generality. Then we
have two possible shapes of ¢/(B) as illustrated in Figure 8. If we add [ onto
¢'(B) to recover p(B), the base point w may be located on one of (0, s1),
5 (81, u21), @5 (21, u2), Ph(ue, s2) and ph(sa, 1). Figure 9 shows the possible
shapes of p(B), when ¢4(s9,1) is contained in D,. From each of the shapes we
can obtain By by the trivializations illustrated in the figure. In the cases of (c),
(d) and (e), because we don’t know the exact position of w relative to ¢'(C1),
the subarcs connecting w are lifted into the same half space so that they have
relative heights as seen in the figure. If w € @4 (u22, s2) and I N @ (u12,1) # B,
then the shape corresponds to (). If w € ) (ugg,s2) and I N ¢} (uiz, 1) = B,
then we can find another {u;;} so that the shape corresponds to (c).

When ¢5(s2,1) is contained in the bounded region D1, we can apply similar
arguments to get Bo. O

Proof of Lemma 6. Let w; be the self-double point of ¢(C;) for i = 1,2. The
loop based at w; is denoted by I;. For each i, select ;1 and t,5 so that ¢;(¢;1) =
%25 (tig) = Wy with i1 < tio. Let m; be the closure of (,0(01) — lz‘, that iS,
m; = @;([0,t:1) U [ti2,1]). And let D and D be the bounded and unbounded
connected component of R? — m;, respectively. Without loss of generality we
may assume that ¢1(f11,%12) is contained in D.

Note that each of m; U ¢(Cs) and ¢(C1) U my can be considered as the
image of another projection of B. If we can obtain a nontrivial embedding
from m; Up(Cs), then an equivalent embedding is obtained also from o(B) as
discussed in the proof of Lemma 5. And the obtained embedding should be
equivalent to By or Bs. Therefore we may assume that each of m; Uyp(C2) and
©(C1) Umg is the image of a trivial projection.

Case 1. Suppose I; Nlz = @. Then I3 Nmy and m; Ny should be nonempty
because ¢ is reduced. We may assume that @2(t') € ¢1(ti1,t12) for some
t' € (0,t21), by reversing the orientation of ¢y if necessary. Now we consider
how (Cs) should be added onto ¢(Ci) in R? so that ¢ is reduced. The
base point wy of the loop Iy may be located in D; or in D,, but should not -
be inside of [;. According to the position and orientation of ws, we have four
possible shapes of ¢(B) from each of which B; is obtained by the trivializations
illustrated in Figure 10. Let e; and ey be two simple subarcs of ¢(C;) which
are contained in a small neighborhood of w; and intersect each other at w;.
The two subarcs were lifted into the small 3-ball with center (w1,0) € R? x {0},
so that they have relative heights as seen in the figure. For simplicity, their
lifts were represented by thin curves.
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FIGURE 9
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(d)

FiGure 10

Case 2. Suppose that I; NIy # @, and that each of ¢(C1)Ums and m; Up(C2)
has a vertex nugatory point. Then we have three cases to consider.

Case 2-1. Suppose that there exist two vertex nugatory points in ¢(C1)Ums.
Let v; and v, be the vertex nugatory points. Then we can find s;; and s;2 such
that v1 = @1(511) = @2(s21), v2 = Y1{812) = Pa(s22) and s;1 < si2. If we
consider ¢(C1) U mgy as a subspace of p(B), then l; should be added onto
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»(C1) U mgy so that no vertex nugatory point is allowed. This consideration
implies that one of three subcases happens as in the below:

(1) 32 n Lpl(O,Sn) 75 w and 12 M 991(812, 1) # 0,
(i) wz € w2(0,s21) and I N (s12,1) # 0,
(ili) {aN1(0,s11) # 0 and we € pa(s21,1).

In any of the subscases, my U @(Cs) is reduced. Therefore, by Lemma 5, we
know that our case can not happen because mi U ¢(C>) was assumed to be
trivial.

Case 2-2. Suppose that wy is the only vertex nugatory point in ¢(Cy)Uma.
Then my Nmy = . Because ¢ is reduced, none of my Ny and Iy Nmy is
empty. Now we imagine how Iz should be added onto ¢(C1) U ma so that
the resulting image is identical with ¢(B). Choose s; and sy from the set
S = (O, tzl) (W) (tgg, 1) so that

- ©2(81), p2(s2) € ¢(C1) and

- if pa(s) € ¢(C1) for some s € S, then 57 < s < so.
Suppose ta1,t22 < 82. Then, according to whether #21,¢22 < 51 and whether Iy
is trivial as an element of 7r; (R? —w;), we have four types of shapes as depicted
in Figure 11. From each type of the projected image, B> is obtained by the
trivialization as illustrated in the figure. In (c) and (d) of the figure, it looks
as if wy is located inside of {;. The four subarcs of ¢{C>) connecting wy are
trivialized into ]Rﬁ~ so that, near ws, they have relative heights as seen in the
figure. Then B, can be obtained irrespective of the position of w. relative to
ly.

Similarly we can obtain Bs in the case that ta1, 192 > so.

Case 2-3. By the discussion in Case 2-1, it suffices to deal with the case that
there is only one vertex nugatory point in each of ¢(C1) Ums and my Up(C2).
And by Case 2-2 we may assume that the vertex nugatory points are not any
of wy and ws. Let vy (resp. v2) be the vertex nugatory point of p(C1) U mq
(resp. myUp(Cy)). Then, after reversing orientation if necessary, we can select
s1 and s, so that

- p1(s1) = @2(s2) = v1,
(,01(0,81) Nmgy =0,
- 81 < t11,t12 and
- 02((0, s2) — (t21,t22)) N(C1) = 0.

Suppose that sz > t2, t22, equivalently, the base point w, of I3 is located on
a bigon of ¢(Cy) Umgy near v;. Now we imagine how ¢, will go forward along
its orientation after passing vy. ‘

Firstly observe the case that ¢2((0,52) — (f21,%22)) is contained in the un-
bounded region Ds. Let w2(s) = ¢i1(s’) be the double point such that s > s,
and @2(s2, 8) N(Cy) = 0. If s = 1, then a bigon should exist near vy in ¢(B).
Therefore s < 1 and there are three possible subcases as given in the below:
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(i) wals) € pi(s1,t1),
(i) @a(s) € v1(t12,1) and @2(s, 1) Nmy = B,
(111) (,02(8) S (,01(t12, 1) and (pg(S, ].) nmq 75 @.
In subcase (ii), (s, 1) should have intersection with 1, for there exists only
one vertex nugatory point in ¢(C1) U mg. Figure 12-(a) and (b) represent the
shapes corresponding to subcase (i) and (ii), respectively. In subcase (iii), if
we can find u;; and u;> such that

t12 <uir <wuiz, § < ugr < ugg,
©1(u11) = pa(uge) and @1 (u12) = @2(u1),

then the shape of ¢(B) looks like Figure 12-(c). If there is no such {u;;}, then
@(s2,1) N1 # @ and the shape of ¢(B) corresponds to Figure 12-(b). In each
subcase we can obtain Bs by the trivialization illustrated in the figure. Also
when ¢2((0, s2) — (£21,t22)) is contained in Dy, we can apply similar arguments
to get Bs.

Suppose that the base point of I (resp. l1) is not located on any bigon of
©(C1)Umy (resp. m1Up(Cy)) near vy (resp. ve). This assumption gives us two
restrictions on the shape of mi Ums. Firstly, m; Umsg should have at least two
double points. Otherwise we can not find any point at which [ is based because
every connected component of ma — {¢(v),v1} is a subarc of some bigon near
v1 in @(C1) Umy. Secondly, there exist at least two bigons in m; Umg. A
bigon in ¢(C1) Ume (resp. ma U p(C3)) is also a bigon in m; Umy. If there
is only one bigon in m1 U mo then it should be a bigon in both of ¢(C7) Umsg
and m; U (C3), and therefore even in ¢(B), which is contradictory. The two
constraints imply that my Uma has two vertex-nugatory points. Figure 13-(a)
shows two possible shapes of m; Umy according to the relative positions of the
two bigons. Now we consider how to add [; and Iy onto m; Umeg to recover .
Each bigon should intersects at least one of the loops. And each loop should
intersects at least one of the bigons without its base point on any of the bigons.
Therefore we have two possible shapes of ¢(B), in each of which B3 is obtained
by the trivializations as illustrated in Figure 13-(b) and (c). In Figure 13-(b),
all of the subarcs connecting ws are trivialized into ]Ri so that, near wo, they
have relative heights as illustrated. In Figure 13-(c), they are trivialized into
R3 . In the two figures it looks as if ws is located in Dy. Also when the point
is located inside of m,, we obtain By by the same trivializations.

Before going into Case 3, we recall a notation. For a projection 1, R(v)
denotes the set of all nontrivial embeddings obtained from .

Case 3. Suppose that [ N1y # @ and ¢(C;) U mz has no vertex nugatory
point. Because p(C1) U my is assumed to the image of a trivial projection,
there exists a nugatory point in ¢(C7) U ma. By the assumption of this case,
the nugatory point should be the separating nugatory point w1, which implies

Linma=0 and R(miUms)= R(p(C1)Ums)=19.
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FIGURE 12. (a) subcase-(i). (b) subcase-(il). (c) subcase-(iii)

()
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FIGURE 13. (a) two possible shapes of m; Ums. (b),(c) Re-
alization of By from each shape.

FIGURE 14



FIGURE 15
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If mq N'mgy = B, then my is a bigon in ¢(B), which is contradictory to that ¢ is
reduced. If m; Nmy # 0, by Lemma 4, there exists a bigon in m; Ums. Again
by the assumption of this case, none of such bigons is a bigon in ¢{C1) U msg.
Because I3 N'my = 0, the base point w; of I; should be located on a bigon b
which is the only bigon in m; Umso. Let v; be the vertex nugatory point in
my Umy corresponding to the bigon b. And let ¢1(s1) = p2(s2) = v1. Because
there is only one bigon in m; Ums, we can select {u;;} such that

t1z <81 <wpy <up <ug, So < ugr < Uz < Uog,

p1(u1) = p2(u2a), @1(u1z) = pa(uz) and @1(uiz) = pa(uar).
Then according to the orientations of ¢4 (s2) and y2(u2s), we have four possible
shapes of ¢(C1) Ums as given in Figure 14. Note that the interior of I, should
not intersect b, so that m; U ¢(Cs) is not reduced. If ¢(C1) U my looks like
Figure 14-(a) or (b), then tss < s5 and therefore the shape of ¢(B) corresponds
to Figure 15-(a) or (b) from which B is obtained as illustrated.

In case of (¢), t22 may be contained in one of the open intervals (sq,u21),
(Ugl,’u,gz), (’ZLQQ,Ugg) and (UQg,l). If tog € (Sg,Ugl) or (’u,23,1), then (p(B) can
be lifted to By by the trivializations illustrated in Figure 15-(c) or (d). The four
subarcs of ¢(C2) connecting wo were lifted into the same half space because
we don’t know the position of wy relative to m;. When to2 is contained in
(u21,u22), we set the over/under passsings so that I passes over ¢1(s1,1) and
the subarcs connected to wo are lifted into R3. And the under/over passings
at the other double points are chosen in the same way with the case that
tao € (52,u21). When t22 € (ugg,u9s), we set the over/under passsings so that
lo passes under (1 (s1,1) and the subarcs connected to w, are lifted into R .
The under/over passings at the other double points are chosen in the same way
with the case that ta3 € (u23,1). Then, in both cases, we obtain an embedding
which has same conformation with the embedding in Figure 15-(c) or (d), after
moving the lifts of wy toward @2 (ugz1 — €) or wa(ugs + €) isotopically. In case of
(d), we can apply similar arguments to obtain Bs. O
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