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ON THE INFINITE PRODUCTS DERIVED FROM THETA
SERIES 11

Daeyeour KiM AND JA KYUNG KoO

ABSTRACT. Let k be an imaginary quadratic field, h the complex upper
half plane, and let 7 € h Nk, g =e™". Forn,t € ZT with1 <t <n—1,
set n _3 21 (3=12,3,5,7,9,13,15) with | > 0 integer. Then we show that

qis™ +2n II5o_, (1 — gvmH)(1 ~ g™~ (n—1)) are algebraic numbers.

§ 1. Introduction

Ramanujan discovered important g-series and theta series, and he further
developed several profound theorems in the study of theta series. In this pa-
per we shall examine certain family of algebraic numbers as values of infinite
products constructed from his theta series by using Berndt’s idea. Precisely
speaking, let us consider the following theta series

fla,b) =1+ Z (ab)™(m=1/2(gm 4 pm) = Z ammAD/2ymm=1)/2

m=—00

where |ab| < 1. If we set a = ge?** and b = ge~?** with z a complex number
and Im(7) > 0, then f(a,b) is none other than a classical theta series 3(z, 7)
in its standard notation ([10, p.464}). Berndt then found many interesting
formulas for Ramanujan’s theta series in [1], [2], [3]. Of these formulas we list
the following two identities for later use:

fla,b) = (—a; ab)oo (—b; ab) o (ab; ab) oo, (]2, p-351])
fla,b) + f(—a,—b) = 2f(a®b, ab®), (12, p-46 )
where (a;b)o0 = [ oo (1 — ab™).
We first obtain from these properties two lemmas (Lemma 2.1, Lemma 2.2)
about algebraic numbers which can be derived from certain infinite products.
Next, Gelfond and Schneider ([7], [9]) independently solved in 1949 the fa-
mous Hilbert 7-th problem concerning the transcendence of 2v2, They actually
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1380 DAEYEOUL KIM AND JA KYUNG KOO
proved the following strong transcendence criterion. For o, 8 € Q with o # 0,1
and 8 € Q, o is transcendental. Therefore, for 7 € kN the Gelfond-Schneider

theorem yields that e™ = (—1)~'* js transcendental whenever i« is algebraic
of degree at least 2 over Q. This leads us to the fact that

(1.1) g = €™ is a transcendental number.

Let K(A,B) := (4; B)oo(8; B)o. We obtained in [5] that ¢®K(q,q") are
algebraic numbers, where the 3-tuple (a,n,t) runs over the following cases:

1 1 1 1 11

D3 g il 50 )
(3561 )(Bf’1 7,1), (55 7,2 (- zj 7,3)
12 (S 83) (36 9,1), (~55,9,2), (339, 4),
(Zz 10,1),(— 13 -.10,3), ( 12,1), ( 12 5), (59 14,1),
(- 814 14,3),(— 21,14,5) (gg 18,1), (-1 ” 2,18,5), (- §2 18,7).

In Theorem 3.1 and Theorem 4.2 we prove that q_"+2n K(qt,q") is an
algebraic number for n = 3-2' (3 =2,3,5,7,9,13, 15) and ! > 0 using the prop-
erties of theta series and (1.1), which would be a generalization of our previous
works ((1.2) and Lemma 2.0). On the other hand Sill recently investigated in
[9] several properties for double sums and infinite products. By using his result
we get 21 algebraic numbers as values of some double sums (Example 4.3).
We also find in §5 certain algebraic numbers derived from the infinite products
twisted by some root of unity (Theorem 5.1, 5.2, 5.3, 5.4).

Throughout the article we adopt the following notations:

¢ k an imaginary quadratic field

e hy the complex upper half plane

eTEhNE

og= e7ri‘r

© £(@,8) = 1450, (@)D (am b = T g )/2pmim-1)/2
o Q the field of algebraic numbers

® (3;b)o0 = [I;p—p(1 — ab™)

o A1) = (2m)'%¢*(¢%; ¢*) 28

e (a,b,...,c;d)co = (a;d) 0 (b;d) oo - - - (€; d) oo

o K(A,B) := (4; B)OO(A,B)OO

e p(g) =Y _q"
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§ 2. Algebraic numbers from theta series

Let o = (g g) with b mod d and |a| be the determinant of «, and let

o (T) = |a|12A (a(1) — |o|!2d12 Alar)

A(()) Alr)
Then, for later use, we recall the following fact that
(2.0) for any 7 € kN h the value ¢,(7) is an algebraic integer,

which divides |a|'2([6]).
Lemma 2.0 ([4, Theorem 2.2]). Let 7 € kNY. Then ¢*/**(—q;q)e € Q and
¢ VK (+g,¢%) € Q.
Lemma 2.1. Let t, € Q.
(a) Letn € Z* and a (< n — 1) be a positive integer. If ¢~ K (¢%,q™) € Q,
then ¢"K(-q%,q") € Q.
(b) Let n be an even integer and a be an odd integer with 1 < a <n — 1.
If ¢ K(—¢*,q") € Q, then ¢*K(¢",q") € Q.
Proof. (a) Assume ¢*=K (g% ¢") € Q. Since ¢%*<K(¢°*,¢*") € Q and the
set of algebraic numbers is a field,
thQK(qQLl’ q2n) c o
g*K (g% q")
(b) Assume K(—q%,¢") € Q. If 7 € hNk, then 7+ 1 € h N k; hence
7" K(q*,q") = (-1)"*¢"* K(—¢* ¢") € Q. O
Lemma 2.2. Lett, € Q.
(a) Leta,n € Z* withn =0 (mod 4) and1 < a <n—1. IfgK(¢% ¢q") €
Q, then qt_zl‘%f((qntza,qz") €Q.
(b) Leta,n € Z* witha,n =2 (mod 4) and1 < a <n-1. If¢=K(q%,q")
€ Q, then q%‘%f((q"?a,q%) €Q.
Proof. (a) From the Berndt’s formulae ([2, pp.35,46]) we deduce that

f(_qa, _qn—a) =+ f(qa’qn-—a) — 2f(_q3a+n—a’ _qa+3n—3a)
— 2f(_qn+2a _q3n—2a)

a“K(—¢*¢") =

that is,

K(g*,d")(@"; 40 + K(—4% ¢ (q"; ¢") oo

(21) ¢ n+2a . 4n 4an., 4n
= 2K(q""**,¢"")(¢""; ¢*")oo-
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Multiplying both sides by g*~% (¢**, ¢**)3! in (2.1), we see that
(¢",9")o

n ,nY
t“_%K a’ n (q yq )00
! (0% (¢*™, ¢*")oo

(2.2) (¢, q*")oo
— 2qta—%f((qn+2a,q4n).

+q to %K( qa»,qn)

It then follows from (2.0) that

G g
921 (¢*"; ¢*") o
)

And, by the assumption, (2.0), (2.2) and Lemma 2.1, we have

¢ 8K(¢""?,¢") € Q.
However, one can readily check that n + 2a = 3n — 2a = 2 (mod 4). Thus,
replacing g2 by ¢ we get the conclusion.
(b) It is similar to (a). O
Corollary 2.3. Letl,n,t € Z* with 1<t <n. If qtaf((qa,qn) €Q, then
tm q(n tym q(n t))m

(2.3) Z g T+ g and Z 7y

are transcendental numbers except 0.

Proof. By Lemma 2.1 we get that gt K(—g% ¢") € Q. And we see from [2,
p.54] that

$mar) LDy Ao

f(—a,-b) L= 1+ambm
Now, replace a by +¢* and b by +¢"~t. Then we know from [5] that ¢(—g¢™)
is a transcendental number. Since w € Q by the assumption, we
have the corollary. S, 7 O

Put n = 2 and 3, respectively, in the first of (2.3). Then we obtain that

2 gm = T

- -1
) 1+q2m=§ (@™ +¢ ™)' and E Tr g =Y (" +g ™ -1)
m=1 m=1 m=1

are transcendental numbers.

§ 3. The case of 2™
Theorem 3.1. Let l,t € Z* with 1 <t <2' —1. Then

ol

qﬁ

2
t
+t3

~ 2 —_—
TK(¢'q*)eQ

Nfe+
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Proof. 1f t is an even integer, then there exists u such that 57 is an odd integer.
Hence, we can check that

! .
U 221_2_%+(2~t”“)2 :£_£+ﬁ_
12 2 zgg 12 2 ' 2L

I Y.
And, ifqu“%_‘* ﬁ“’K(qz ") € @, then ql_i““{ ST K(q', ¢ ) €Q.
Thus we may assume that ¢ is an odd integer with 1 <¢ < 2t 1.
We will proceed by induction on [. By Lemma 2.0 we know that

; 1 1_1 . ; 28 r oy 2
with i3 = & + _1 Here we must consider the case 5 — 5 + 50 by

using Lemma 2.2. Then by (3.1) we may write q‘il_élff(q, q*) € Q with —% =
53T R

Now, we assume that g = ~itsim K(¢t,q*?) e Qwith 1 <t < 21 —1.
From Lemma 2.2 we can deduce that

(32) Q2 1, §+m~ -Tﬁ‘”}%( 4.2t 42f’ 4‘21-&1) E@

with |
1<4-? t+_ t2 ) 4.21 4.9 “eyan'+(42g%)2
2 12 2 4.2l+) 16 - 12 9 2‘4.2“1

Also, it follows from (3.2) that

4.2¢ 2-2‘{~t+£2~2l—t)2 -

¢ TR R(@Y ) €

and
g2t _ &i+(2 2t )2 9.9 4.9
2 2420 K(q' _t,q' )
42%% 4-20 42t .o
. aaltl ) <—§f—) a2lpnt )
(3.3) g 2 PWRTEST (q“““z‘—‘7q4'2’“)
4.2l 2. 2‘ @2t-p? . ! 41 —
=g 2 +242l+1 K( (22—i}’q4.2 )EQ

We then see from (3. 2) and (3.3) that each case of £ (1 < t < 22y in K{(gf, q‘*‘zl)
gives rise to s, = 42 252 and 55 = 2- 2! —tin K(¢*,¢*? +i)( 1,2). Thus all

these are algebraic numbers forl<t<4-2'in K (d¢*.q 4:2% ) This completes
the proof. 0

Corollary 3.2. Let [,n,t be positive integers with 1 <t <20 — 1.
(a) K (q q l) is a tmnscendental number
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(©)

ol i
x qtm+q(z L o (__qt)m+(_q(2 t))k
Z and Z 1+ (—g)?m
m=1 q
are transcendental numbers except 0.
Proof. (a) If K (qt,qzt) € Q, then there should be a positive integer ¢
satisfying % -i+ gfi—l = 0 by Theorem 3.1 and (1.1). Equating
%*%-Fg?i—f::(), we have

_ (3+v3)2 . (38— v3)2
-6 Y 'TT6

which is impossible.
(b), (¢) It is immediate from Lemma 2.1, Corollary 2.3, and Theorem 3.1. O

Examples. ¢~ % K(q,¢%), ¢ % K(q,¢"), ¢ 2K (¢%.¢"), ¢# K (g, ¢°), 4@ K (%,
), 1% K(¢3,¢®) and ¢~ %= K(q* ¢°) are algebraic numbers. And, we note
that Theorem 3.1 and Lemma 2.1 would be a generalization of Lemma 2.0.

§ 4. The case of 3-2' (3 = 3,5,7,9,13,15)
Lemma 4.0. Let n > 1 be an odd integer. If
(B HRR (M eQa<t<n-1),

——+MK(q(n—t} q2n) € Q

Proof. We know that ¢ or n—t is an odd integer. Thus we may assume that n—¢

then qﬁ

n 2 . —
is an odd integer. Since ¢ and 2n—t are even integers, ¢ ~ 537 K(¢?,q") € Q.
So is

EIS

q
q

=K (", q")
]{'(qt, ¢)

n_n n—%
m_noty (nmy)?

=q

-4
z+
t

K(g™=9,¢*).

wl:
“E“m to|~

O

Theorem 4.1. Let | > 2 be an odd integer. If qTIﬁ“é“"%%I%(q‘,ql) € Q with
a, 2 ~ @ .

1<t<l—1, then B 25 K(qt,¢*") e Quith 1<t <2°- (I — 1) and

acZt.

Proof. By Lemma 4.0, Lemma 2.2 and the similar arguments as in Theorem 3.1
we get the theorem. 0
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Observe that by using the properties of theta series in [1], [2], [3] we obtain
from (1.2) that

(4.0) q%ff(q,qf’), w0 K qz,q"’),

are algebraic numbers.
Next, by the Entry 36 ({3, p. 188]) we have

—gf _dd
(4.1) Pl -+ (-, ") = 3 (=¢) f(=¢®,—q)

f(=¢% —4")
and
3 12
49 Pt @R e = PO,

where f(—q) = (g; q)oo. It then follows from (4.1) and (4.2) that

4.3 5 3 33
( ) _ q254 (qs; qs)oo q 28 K(qﬁ,q15) . @
q7 (¢'5;¢*%) g® K (q3,¢")

and

4.4 3 5 4
(44) _ <q2i(q5;q5)oo ) g9 K(g% ¢")
- 5 3

And, one can readily check that

(q%ff(q, q”’)) (q% K(¢, qlE))
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Thus, we derive from (4.3)~(4.6) that
47

g% K (q,¢"), g% K(¢%,¢"),

(4.7) Ly o
¢ BK(¢%¢"®) and ¢ BK(¢",q")

o|w

are algebraic numbers.
Similarly, by using the Entry 8(i)([2, p.373]) we obtain that

87 o ﬂ _1_
a5 K(g,¢%%), ¢ K(¢% %), ¢ HK(¢%¢7),
71

K¢ ¢"), ¢ K¢, _%ff(q ,q"%)

are algebraic numbers. Therefore we are ready to justify the following theorem.

(4.8)

Theorem 4.2. Let n,t,l € ZT with1 <t <n—-1andletn =3 2" 3 =
3,5,7,9,13,15).

(a) %‘”‘MK( Lq") Q.
(b) ( q") is a transcendental number.
A(q ") _=
— c Q.
© K(-gt,q") ©

Proof. (a) We will proceed by induction on I. It follows from (1.2), (4.7)
and (4.8) that ¢®K(q?,q") € Q for n = 3,5,7,9,13,15. Then by using
the same arguments as in Theorem 3.1 we can derive the conclusion.

(b), (¢) As for (b) and (c), it follows from (a) by using the same ideas in
Corollary 3.2, Corollary 2.3, and Lemma 2.1. a

Sills found in [8] a list of 26 new double sum-product Rogers-Ramanujan
type identities. From these identities we establish the following 21 examples
by using Theorem 3.1 and Theorem 4.2:

Example 4.3. Let (a;b), = HT_ZI (1 - ab™).

(4.9) g%y Z

n>07‘>0 n(4% ¢®)r(q; Qn—2r

3n(n 1)/24+r2—2nr

=% (-g;0)o €Q.

n(n+1)/243r(r=1/2(~1; ), (6% ¢ )ner—1

2n 1(q QS)T(Qa )n——3r

1+>°> q
(410) n>1r>0
_ (%45 d%¢! )oo(—q;q)oo T
(900

(4.11)
ZZ D22 159), (67,7954 oo (-G @)oo €Q
150720 GG ) (@5 Doz (459 oo :




(4.17)

(4.18)

(4.19)

(4.20)
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2 2
qn +2n+2r°42r s (qz,qm,qlg;qlg)w .
Z Z 2. 9 =qm € Q.
S50 (€0 n41(4% ¢%)r (4 Dnor (79
R B s T L Oy et bl b
2. 02\ (o =qr € Q.
n>07>0 (4 0%)n+1(0% @*)r (@ Dn—2r (q q)

2 2
g e s (0%0%, %0~
ZZ( (0% ) (4 9) =g - 0) €Q.
S0 50 (6 0°)n(0%6%)r (6 Dn2r CHNES
qn2+2r2 L (g5, ¢, q'8: ¢'%) .
Z s :q_ﬁq’q yq4 3 OOGQ‘
55 (66)n(0% 6%)r (¢ On2r (¢ @Doo
2
> PO e 0 (6005,
Z (q; 3. .3 (o =g } €Q.
-0 7>0 aq>2n+2(q yq )r(Q7Q)n—3r ((LQ)oo
n 243r(r— 3)/2(q3'q3)n~r41

HE»N

n>1r>0 @)on—1(2% ¢*)r (¢ Pn—3r

I

3

(¢°,4%,¢° ;q21)oo

= q84 c @
(9o
n+3r( 1)/2(,3. 43
qﬁ 1 + ZZ T (q yq )n~7‘—1
n>1 'r'>0 2” 1 q )T(q;q)n—&r
9 )
:qé(q 4%, % ¢%) cT.
(2:9)
g% [1+ DI qn =) (—g;¢%)n (4% ¢ nr1
n>1r>0 )2n- 1(‘1 4%)r (4% q*)n—3r
5 (¢%,¢*, %4 ¢° )oo(—q;qg)oo —

(4%9¢%) €Q

. g2 6. ,6
g% 1+qu (-4,6°)n(¢°; ¢°)n—r—1

n>1r>0 2)an—1(4%; ¢%)r (% ¢*)n—3r

n243r(r— 1)

°,q"%, % ¢ )oo(—q;qQ)oo -

1 (g
(4% ¢%) o €Q

:qu
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1+qun(nﬂ)m3r (L @)n(g%; ¢*)n—r-1
(4 21) n>1r>0 q’ Q)2n—1(q3, qg)T(Qa Q)n—Br
_ (@%,¢%,6*¢*)o(~ 4 @)oo

(@)oo
" Zpar?dr+ B

ZZ(% (g% 9%)r (9% ¢ n—2r

(4.22) n>0r>0

=q§g(q,q

€Q.

28 28)

(¢ 7q2)oo( G0 ) €Q

nfyori- &

g
(4.23) 7;;0(% 4?)n(g%; 4 (6% ¢ )n-2r

s (%%, q

1() 28

28
o 187 )oo(—4; 6%)oo cT.

(q 19%)oo

14 Z (= 1)n+rq i tntrtye— 2m~(q )n+r-—1("1;Q)2n
n>17r>0 (q’ Q)4n~—1 (Q; q)21" (q27 )n—r

(@ Dan+1(g D2r+1 (4% 6% )n—r

(4.24) +3

2lrz
18

- (q > 18}q36;q36)m(_q;q)m E@
(9o

Z( 1)”+T P 2m+1(q )n+r(—1;4)2n+1
r>0

2 602
@1+ g 5 8 (—g5¢%)n (% 0% n—r-1(¢% + ¢}?7+ — 1)
S5 (9% 6%)2n-1(4% ¢%)r (4% ¢®)n—3r

2 (8,6%,6%¢*) (-4, ¢*) oo

(6% ¢

€ Q.

q?;—g 1+ ZZ q" o +6r( g; 92)71(9 q )n —r—1
(4.26) n>1720 4% 9%)2n-1(4% ¢%)r (4% ¢*)n—3r

= 300 (6w g
(0% ¢*)oo

> 1+ZZ " (=45 ¢*)n (9% ¢%)nr-1
(4.27) 5155 (@%4%)2n-1(05% 0)r (4% 4)n—sr

-k (q2 :q zq 3q48)oo(_Q; qz)oo =
= q 32 [ Q
(4% ¢%) oo
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q_% 14 ZZ "+T 3n +rigr— QHT(Qq4;2q4)n+r—1
n>1r>0 Dan—1(¢; Q)2 (6% ¢*)n—r
(4.28) + Z Z n+r 3n?42n4ri4r— 2nr+1(q4_q4)n+r
n>1r>0 (¢:9 4n+1(q @2r+1(¢% ¢*)n—
— (6*, 6%, "% 6" o cT.
(4 Qoo
(4.29)
2
q_71_2 1 N Z (_1)n+rq2n2+2r +2r—4nr(q8;q8)n+r_1(_q; q2)2n

n>1r>0 (q2;q2)4n—1(q;q)2r(q4; q4)n—

] 2 2 —
(_l)n+rq2n +2r“4+2r 4nr+1(q8;q8)n+r(_q;q2)2n+1

s (2% 4%)an+1(a% ¢*)2r+1(q%; ¢*)n-
_ q—ﬁ ( ,q ;q72)oo(_q5 qz)oo c @
(qQ;qz)oo

§ 5. More algebraic numbers

In this section we consider a family of algebraic numbers for the infinite
products twisted by some root of unity.

Theorem 5.1. Letn > 2 be a positive integer, 1 <t < n andw a primitive cube
n 2 A n 2

root of unity. If qiz— 5+ 5K(¢hq") € Q and ¢~ B8t & K(¢™, %) € Q,

then

q(nl—:’f)z H (1 + qunm—(Bn—t))(l + w2q3nm—(n—t))(1 + wq3nm—(2n+t))

m=1

s (1 + w2q3nm—t)(1 _ wq.‘}nm—n)(l _ w2q3nm—2n)

are algebraic numbers with double signs in the same order.

q12 2+2nK( )e(@a,ndq_ﬁ_%+éiK( —q" + )eQbyLemma2.1.
On the other hand we see from [3, p.144] that

(5.1) flwa,wb) = wf(a,b) + (1 — w)f(a®b?,a%)
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with |ab| < 1. Thus, let a = ¢* and b = ¢"~* in (5.1). Then, multiplying both
(n1—22t22
sides of (5.1) by — g
K(_qn-}—t’ q3n)(q3n; q3n)oo
(5.2)

00
q("—l_zz%ﬁ H (1 + qunm—(3n—t))(1 + w2q3nm—(n—t))(1 + wq3nm—(2n+t))

m=1
. (1 4 w2q3nm—t)(1 _ wq3nm—n)(1 _ w2q3nm—2n)

w202 K(=¢" ¢")(q"; (")oo

we get that

= wq 12n -
K(_qn+t7 an)(q3n; an)oo
+ (1 B w)q% K(—q3"+3t, q9n)(q9n; qgn)oo

f{(_qn+t’ q3n)(q3n; q3n)oo ’

2
Since % — %+ %—(—% - %4—%)— n = £"1;227:L, the value on the right hand
side of (5.2) is an algebraic number. Hence, we obtain the result. Similarly,

setting a = —¢* and b= —¢"~* in (5.1) we can complete the proof. O

Corollary 5.2. Letn =3-2' (3 =2,3,5) be positive integers with | > 0 and w
a primative cube root of unity. Then

0o
q%ﬁ H (1 + wq3nm—(3n—t))(1 + w2q3nm—(n—t))(1 + wq3nm—(2n+t))

m=1
. (1 + w2q3nm—t)(1 _ wq3nm—n)(1 _ w2q3nm—2n)

are algebraic numbers with double signs in the same order.
Proof. 1t is immediate from Theorem 3.1, Theorem 4.2, and Theorem 5.1. [

n tz 2, =

Theorem 5.3. Let n > 2 be a positive integer. If g2~ 3T K(gt,q") € Q,
then

2

ooty t2
12 2+ n

(1 iiq2nm—(2n—t))(1:Fiq2nm—(n—t))(1 iiq2nm—(n+t))(1¢iq2nm—t)

3

q

m=1

are algebraic numbers with double signs in the same order.

Proof. By the Entry 9 ([3, p.146]) we claim that

(5.3) Flai, bi) = %(1 +i)f(a,b) + (1 — i) f(~a,—b)

with |ab| < 1. Set a = £4¢* and b = £¢" in (5.3) with double signs in the
same order. Then, by adopting the same arguments as in Theorem 5.1 we can
derive the conclusion. a
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Corollary 5.4. Letn =3-2' (3 = 2,3,5,7,9,13,15) be positive integers with
1 > 0. Then we see that

0o
n t2
qgw%—{v% H(1i?-,qunm-(2nwt))(1:F,iq2nm~(n-t))(1i,iqimm-w(n-{nt})(l:{:?;q2nm~t)

m=1

are algebraic numbers with double signs in the same order.

Proof. It is immediate from Theorem 3.1, Theorem 4.2, and Theorem 5.3. U
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