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COUNTING REAL J-HOLOMORPHIC DISCS AND SPHERES
IN DIMENSION FOUR AND SIX

CueoL-Hyun CHO

ABSTRACT. We provide another proof that the signed count of the real J-
holomorphic spheres (or J-holomorphic discs) passing through a generic
real configuration of k points is independent of the choice of the real
configuration and the choice of J, if the dimension of the Lagrangian
submanifold L (fixed point set of involution) is two or three, and also if
we assume L is orientable and relatively spin. We also assume that M is
strongly semi-positive. This theorem was first proved by Welschinger in
a more general setting, and we provide more natural approach using the
signed degree of an evaluation map.

1. Introduction

Let (M,w) be a symplectic manifold with an anti-symplectic involution 7
whose fixed point set is a Lagrangian submanifold L. We choose a generic com-
patible almost complex structure J, which satisfies {7),J = —J. We assume
that M, L and J satisfies the above condition throughout the paper. Addition-
ally, we assume that L is orientable and {relatively) spin, and M is strongly
semi-positive, which means that for every spherical class @ € Hz(M,Z) such
that [w](a) > 0, the inequality ¢;(M)a > 2 — n implies ¢;(M) > 1. The
first condition implies that the moduli spaces of J-holomorphic discs are ori-
entable. The second condition implies that the moduli space of simple real
J-holomorphic (or Ji-holomorphic) discs form pseudo-cycle modulo disc bub-
bling (see Section 6 for definition).

In this paper, we study the counting of J-holomorphic discs w : (D?,0D?) —
{M, L} with the above assumptions or real J-holomorphic spheres

we : (CPY, cong) — (M, )

preserving real structures. We call them real J-holomorphic discs (or spheres)
from now on.
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Theorem. Assume M,w, L, J satisfy the above assumptions. If the dimension
of L is two or three, then there is a signed count of J-holomorphic spheres (and
discs) which passes through a given real configuration of points such that it is
independent of the choice of a real configuration of points or the choice of a
generic almost complex structure.

This result was proved by Welschinger in his beautiful but mysterious pa-
pers {10], [11], [12] in a more general setting. The purpose of this note is to
provide conceptually more natural approach to the proof of the invariance of
the counting using the moduli spaces of J-holomorphic discs.

First of all, one naturally expect that the count of the real J-holomorphic
spheres should be related to the counting of real J-holomorphic discs since
the former can be obtained as a complex double of the latter. But the exact
statement with orientation is rather complicated.

The most natural way to define an intersection number is as a degree of a
certain map f : M — N where M, N are oriented manifolds (for N connected).
From the basic transversality theory, the signed degree of f, f~1(n) for some
n € N, is well-defined, and invariant under the choice of n € N if the manifold
M has no boundary. In our case, we may try to consider an evaluation map
evy from the moduli space of real J-holomorphic spheres to L¥ and consider
its signed degree. But the moduli spaces of real J-holomorphic spheres are
not known to be orientable (in fact, the Proposition 2.1 suggest that it is not
orientable in general). Hence we can not define the count as a degree of the
map evy from the moduli space of real holomorphic spheres.

Our approach is to use the moduli spaces of J-holomorphic discs instead,
because they carry coherent orientations when the Lagrangian submanifold L
is orientable and (relatively) spin. But the disc moduli spaces have boundaries
(actually corners) provided by the splitting of domain into two (or more) disc
(or sphere) components. Therefore, the signed degree of evy, for each homotopy
class of the discs is not well-defined. The idea, then is to put together several
moduli spaces of holomorphic discs to make codimension one boundaries can-
cel out each other, so that the sum of signed degree is well-defined. We use
the conjugation 7 to make sure that there is always a matching pair for each
boundary term. But, this also does not work, as the orientation changes of the
conjugations depend on the Maslov indices of the holomorphic discs and the
number of marked points. Hence, as we put together these moduli spaces of
holomorphic discs, some boundaries cancel out but some of them do not cancel
out.

But we show that for dim(L) = 3, the images of the boundary strata (under
the suitable evaluation maps) always cancel out if the image is of codimension
one. If the evaluation images are of higher codimension, they are irrelevant to
the proof of the well-definedness of the degree of the evaluation map. Hence,
in this case, the signed degree is well-defined.
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For the case dim(L) = 2, we need to add an additional sign corresponding
to the cyclic ordering of the boundary marked points, and we show that the
modified counting (which we call B-count) is well-defined as in the case of
dim(L) = 3.

The approach taken by Welschinger is to define a sign (spinor state) to each
preimage curve, (not the whole moduli space), and to prove the invariance of
the signed count as the configuration of points changes. Configurations might
pass though critical points of the evaluation map evy or a reducible curve. {The
critical points of the evaluation maps are such as the images of cuspidal curves
[5]). Hence his proof is quite analytical as he needs to analyze the change of
spinor state as the configuration crosses the critical values of the evaluation
maps.

Our proof is rather combinatorial as we focus on the cancellation of signs.
We can bypass the analysis on the transversality of the evaluation maps, as the
well-definedness of the degree can be proved without such analysis.

Our method does not generalize to the higher dimensional cases (see [12]).
For dim(L} > 4, the counts we define in this paper, may changes as the con-
figuration of points passes through reducible curves in general. This is because
there may be too many types of reducible curves, and it is not possible to
guarantee the cancellation of all codimension one images.

When this work was made available online at the arXiv (2], we learned of
the similar work in progress by Jake Solomon whose work appeared online after
two monthes [8]. He has discussed the case when the Lagrangian submanifold
has dimension two and unorientable, and proved that the count of pseudo-
holomorphic discs agrees with Welschinger invariants.

Acknowledgement. We would like to thank Seongchun Kwon for reading
the draft version and for the helpful suggestions. We would like to thank Jean-
Yves Welschinger for explaining his results during his visit to Northwestern
University in 2004.

2. Orientation of the moduli space of discs and its conjugates

2.1. Orientation and conjugation.

Suppose M, w, J, L, 7 satisfy the assumption given in the introduction. Re-
call that for any J-holomorphic map w : (D?,dD?) ~ (M, L), its conjugate
J-holomorphic map is defined as

(2.1) W(z) = 7 ow(z) for z € D*.

We denote the homology classes as 8 = [w] € Hao(M, L), and 7.(8) = [@]. Let
us first recall the following proposition from [3], which analyzed the orientation
change under the conjugation. The space of holomorphic discs were shown to
be orientable in [3] when L is orientable and relatively spin.
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Proposition 2.1 ([3] Proposition 11.5, Corollary 11.9). The map

T : Mok (8) — Mo (r(8))
gqwen by
(w, 20, ..y 2k—1) — (W, Z0,s - -+, Zh—1)
is orientation preserving if and only if

pr(B)+2k=0  (mod 4).

Remark 2.1. The sign of Mg x(8) in this proposition does not incorporate the
cyclic ordering factor, which we will explain later. For the definition of the
moduli spaces used in this paper, see Section 6.

Note that we have the following commuting diagram for each k,

Mo 1 (6) S A
(2.2) T | . |
Mor(m(B) =57 Lk

Here evr g : Mox(8) — L* is the evaluation map at the boundary marked
points. Therefore, the evaluation images exactly equal to each other and the
difference is the orientations of the domain moduli spaces, which can be com-
pared using the above theorem. The rought idea of the proof is as follows (see
[3] for the exact details.) Note that the space of holomorphic discs of homotopy
class 3 has real (virtual) dimension n + u(3), where its n-dimensional part of
the tangent space of the moduli space is oriented by spin structure of L, and
the remaining part of dimension u(3) carry a complex orientation. Then, note
that the conjugation C#/2 — CH/? is orientation preserving if and only if 4 =4
(mod 4), and the conjugation (0D?)* — (9D?)* is orientation preserving if
and only if k is even.

A good example of this is the case of (CP!,RP'). Denote the upper-
hemisphere disc by U and the lower-hemisphere disc by L (their Maslov indices
are two). In [1], we show that for the obstruction cycle (the case k = 1, hence
p+ 2k = 4), the contributions of U and L does not cancel out, and for the
boundary map of Floer cohomology (the case k = 2, hence p + 2k = 6), the
contributions cancel out.

Another example is the case of special Lagrangian submanifolds in Calabi-
Yau 3-folds which is given by anti-symplectic involution. In this case, virtual
dimension of the moduli space of holomorphic disc is zero and we can count
such holomorphic discs. First note that the sign of conjugation in this case with
one marked point is always negative, because Maslov index vanishes. Hence
whenever there is a disc bubbling (he bubble component is attached to the main
component with one marked point), the above sign comparison shows that they
occur in pairs with opposite sign which cancels out as explained in this paper.
Yet the count is not an invariant in general as announced by Kenji Fukaya in
his talk at Northwestern University and Waterloo in 2004. In this case, he has
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pointed out that there is an additional codimension one phenomenon, which is
the sphere bubbling where the remaining disc component becomes a constant
disc. Solomon [8] has shown this explicitly using the work of Fukaya, Oh, Ohta
and Ono (3], where he restricts the homology class of the holomorphic disc not
to be spherical so that such a phenomenon cannot happen.

2.2. Cyclic ordering of marked points: A and B counts

Consider the moduli space of distinct & marked points on 8D?, denoted as
Mg,k~ Here we assume k > 3. Here the marked points can be considered as a

subset of (9D?)F \ A modulo PSL(2 : R) action where
A :={(z0,...,2k-1) € (8DHF|z; = z; for some i # j}.

It consists of (k — 1)! connected components according to the cyclic ordering
of the marked points on S, therefore the moduli space of J-holomorphic discs
Mo x(8) also has at least (k — 1)! connected components.

As they are disconnected, there are two ways to orient the whole moduli
spaces Mo (). One ways is to orient the marked points as a subset of (9D?)"
with counterclockwise orientation on D? (modulo PSL(2,R)).

The other way is to incorporate a factor regarding the cyclic ordering of
the marked points. Namely, in the latter case, orientation may be defined by
the following relation: For a permutation o of {1,...,k} (for k > 3), the map
ox : Mo k(8) — Mo x(8) defined by

O (w, (z1,..-, zk)) = (w, (Zo(1ys e ,za(k)))

is orientation preserving if and only if o is an even permutation.

This provides two different orientations on the moduli spaces Mg x(5).
Therefore, if we consider the count based on each orientation, we get two dif-
ferent signed counts of J-holomorphic discs. We will call the count, A-count
(resp. B-count) if the orientation does not (resp. does) incorporate cyclic
ordering factor. We remark that the cyclic ordering factor was used to in [3]
in the construction of A,-algebra of Lagrangian submanifolds, but it was not
used in a crucial way as A, structure is constructed using the main component.

For the purpose of the B-count, it is sometimes helpful to consider each
connected pieces of the moduli space M ,(3) separately. Hence, we will denote
by Mgf,‘jm (B) the connected component where the marked point are cyclically

ordered counter clockwise as (zo, - . ., zx—1 ), and by ng(,:n ") (8) if the marked

points (250 -+, Zo(k—1)) are cyclically ordered for a permutation o of the
index set {0,...,k —1}.

2.3. Comparison of signs of the discs and its conjugate in the count-
ing

For any J-holomorphic disc w passing through a given configuration of real
points, the conjugate disc w also passes through the same configuration of
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points. We compare the sign of intersections for w and w as we consider
counting problems.

Suppose the number of J-holomorphic discs of Maslov index u passing
through % points on the real Lagrangian submanifold is finite (for a regular
J as chosen in Section 6). Namely, we will assume that

(2.3) n+u(B) —3+k(1—n)=0.
Suppose the disc (w, (2o, ..., zx—1)) intersects the configuration of k real points
{z0,...,2x—1} at the corresponding marked points. The case of real configu-

ration will be carried out in Section 5.
We define the orientation of the intersection to be the usual preimage orien-
tation of

(2.4) evk_);(:cl X +eo X Tpo1)

(see [4] Chapter 3 for the standard definition of preimage orientation).
Now, for the moduli space Mg ,(7.3), we consider

(2.5) evk_’i*ﬁ(xl X +vo X Tg—1)-

The preimages (2.4) and (2.5) are the same as unoriented sets from the
diagram (2.2). Now, there may be several discs in (2.4) but we may compare
the signs at the same time because the differences of the signs only depend on
the Maslov indices of the maps and the number of marked points, which are
fixed in this case.

For the A-count, Proposition 2.1 can be used to deduce that (2.4) and (2.5)
have the same signed counts if and only if u/2 + k is even.

For the case of the B-count, the conjugation also changes the cyclic ordering
of the marked points to the completely reverse order. This amounts to the new
sign contribution (—1)(*=2(x-1)/2 " Hence, for the B-count, (2.4) and (2.5)
have the same signed counts if 4/2 + k + (k — 2)(k — 1)/2 is even.

We provide the following table according to the above criteria, and here we
consider the mod 4 dimension of the Lagrangian submanifold and the mod
4 number of point-intersection conditions. If (2.4) and (2.5) have the same
orientations, then we denote by 1 and the opposite orientation by —1. We
mark X for the case which does not occur when we consider the condition
(2.3).

A counts B counts
dim(L) | k=0 |k=1|k=2|k=3k=0|k=1]k=2|k=3
0 X 1 X -1 X 1 X 1
1 -1 1 -1 1 1 1 -1 -1
2 X 1 X -1 X 1 X 1
3 1 1 1 1 -1 1 1 -1

We only check the first row here, and the other rows can be done similarly.
Let dim(L) = n = 44 for some i € N, then by (2.3), we have u = 4lk—k+3—4l.
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Note that k£ needs to be an odd number to have p an even number. Hence, for
the A-count, we have

p/2+k=(k+3)/2 (mod2).
In the case of B-count,

o, (k=1)k-2) K +1
5 + &+ 2 =
We interpret the table in the following way. For the case the entry is (—1) (for

example dim(L) = 4, k =3 (mod 4)), the signed count of real J-holomorphic
discs (or spheres) adds up to zero, if we count holomorphic discs of both homo-
topy classes § and 7.3. For the case the entry is {+1), the signed count of real
J-holomorphic discs would be twice the signed count of real J-holomorphic
spheres. Later, we will consider the A-count when dim(L) = 3 and the B-
count when dim(L) = 2. One can easily notice that in both cases, counts do
not cancel out directly by the above table.

k=0 (mod 2).

3. Reducible curves and cancelations

Let (X, w) be a reducible real J-holomorphie disc with boundary on L, whose
domain X consists of two disc components, denoted as 31, Yo, which intersect
each other at a point. We denote the restriction of the map w on %; as w; for
1= 1,2. We denote the homology classes as

ﬁi = {wz(&)} S HQ(M, L),
and we have § = (3 + 2. The moduli space of such reducible curves form
a codimension 1 boundary strata of the moduli space of J-holomorphic discs

M(B). With the boundary marked points, the moduli space My (5) has
codimension 1 boundary strata as

Mok +1(81) evi Xewvy Mo,kat1(82)-

Now, we consider the conjugate holomorphic discs of the second component
of homotopy class 7.{82) (See (2.1) for the definition}. Then, we consider the
fiber product

Movkx-{-l(ﬁl) evy Xeug MOﬂkz-i-l(T*(ﬁQ))'

This can be considered as a boundary of the moduli space Mg (51 + 74(52)).
Hence, when we consider

Mo (B + B2) UMo k(81 + 1{52)),

the above two boundary strata disappear by cancellation in mod 2. Sim-
ilar cancellation occurs for Mo x(7(81) + B2) with Mo x(74(81) + 7(52)).
Note that there is another choice of matching them for cancelations in mod
2, namely comparing M(B; + B2) with M{(7.(81) + B2) and M(B1 + 7.(82))
with M(7.(81) + 7 (82))-
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But in either way, if we consider them with orientations, they do not cancel
out in general. We proceed more precisely. We have a signed formula as the
following.

3.1) Mok +1(81) ev; Xevo Mo,ka+1(82) = (—1)°(Mo.x(B1 + B2)),

(3.2)  Mok+1(B1) evs Xeve Moz +1(Te(B2)) = (=1)°0(Mok(B1 + Tu(B2)),
which has the same e exponent (see 4.2).

In fact as we compare Mg (51 + B2) and Mg (081 +7«(02)), we need to com-
pare connected components of different cyclic ordering because the conjugation
T on 2 will change the cyclic ordering of 7,82 component for k; > 2. More
precisely, for (3.1), suppose the marked points (z¢, z1,. .., 2k—1) are cyclically
ordered and they split into

(20y -+ s Zim1y Zuy Zikkas - -« 5 2k—1) AN (20, Ziy Zit1s - -+ Zitky—1)s
where * denote the marked points where we glue two discs. Let o be the
permutation of the index set {0,...,%k — 1} which maps

©,....k—1)—(0,...,i— 1,3+ ke — 1,5+ ks —2,...,5, i+ ko,...,k—1).
Let o5 be the permutation of the index set {,i,i + 1,...,% + k2 — 1) which
sends

(00041, i+ ke — 1) (x,i+ka—1,...,1).
Then, we rewrite (3.1), (3.2) as
(3-3) 0r31(B1) evs Xewy MEREE1(B2) = (1) BMEE™ (B + B2)),
(3.4)
B2 (B1) e Xewg M (ru(B2)) = (=1 OMEL™ (B1 + 7(82))-

We will see in the next section that if the left hand sides (LHS) of (3.3) and
(3.4) cancel out with sign then we may regard that such boundary stratum
do not exist. Namely, as we consider cobordisms, as soon as the preimage
hits a boundary stratum of a moduli space (death) and there should be a
corresponding intersection to the pair (birth) and the cobordism will continue
as if there was no boundary in the case that the signs are opposite to each
other.

It is easy to see that the cancellation of (3.3) and (3.4) is equivalent to
comparing the orientations of M | (82) and Mgf,fﬁ‘zlln) (1+(B2)). Hence for
the case of A-counts, they do cancel out if and only if

(3.5) p(B2) +2(k2+1)=2 (mod 4).

For the case of B counts, the moduli spaces are oriented differently according
to the cyclic ordering, hence they do cancel out if and only if

(3.6) p(B2) +2(ka +1) + ko(ke —~1) =2  (mod 4).

We remark that clearly there is an analogous story for real J-holomorphic
spheres as in Figure 1. But usually the reducible curves are not considered as
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Real holomorphic sphere case

t Conjugation

Holomorphic disc case

fimit
_—

F1GURE 1. Conjugation

boundary of the moduli spaces of real J-holomorphic curves because of this
cancellation in mod 2. But the drawback would be that the moduli space of
real J-holomorphic spheres with marked points seems to be non-orientable in
general from the above analysis.

4. Invariance of J-holomorphic disc counts in some cases

We define a signed count of J-holomorphic discs passing through generic real
k points and prove its independence with respect to the choice of an almost
complex structure or the choice of configuration of real points with the given
assumptions.

First, we choose a spherical homology class a € Ho(M), and we say 8¢ = a
if there is a holomorphic disc w of class 3 € Ho(M, L) such that its complex
double we has a homology class «. It is not hard to check that if Gc = «, then
(1+f8)c = « also.

Let * = (z1,...,2%) be the configuration of k real points in L. Now we
define the count of J-holomorphic discs for each o € Ha(M) as

I, x) == #( U ev,;};(m,---,wk)),
vB,8c=a

where I = A or B depending on the orientation of the moduli space of holo-
morphic discs.
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Theorem 4.1. Let M, L, J, 7 satisfy the assumption given in the beginning of
the paper. Then, the A-count when dim(L) = 3 or the B-count when dim(L) =
2 of J-holomorphic discs (hence real J-holomorphic spheres) is invariant under
the choice of a configuration of real points or the choice of a generic almost
complex structure.

Remark 4.1. The case of real configuration of points is proved in Section 5.

Proof. To prove the independence over the choice of k real points, we take a
path

z(t) = (w1(t),. .., zx(t)) € LF.

Consider

(4.1) U evih@).

VB3,8c=c

By choosing a generic path x(t), we may assume that x(¢) is transversal to both
the evaluation images of non-singular strata of Mo x(8) and the images of the
codimension one strata for all homotopy classes 3 with 8¢ = «. Therefore,
(4.1) is a collection of one dimensional manifolds with boundaries.

We will prove that the codimension one boundaries resulted from the inter-
section with reducible curves of (4.1} cancel out, and the remaining boundaries
provide the cobordism between U4 5.—, evgé(m(l)) and Uyg go—a e'uk"’é(x(O)),
hence proving the invariance of the counting.

Similarly to prove the independence over the choice of a generic almost
complex structure, we choose a generic path {J;} (see Section 6), and consider
the moduli space | Jy<,<;{t} X Mo,£(8, J;). The possible boundaries arise when
t =0ort =1 or when disc splits into reducible discs at some time t; €
(0,1). Again, it is enough to show that the images of the boundaries of type
ev({t:} x OMo x(8, Ji;)) cancel out, to obtain a cobordism between the case of
J() and J: 1.

We remark that we do not consider another type of codimension one bound-
ary of the moduli space mentioned in the introduction of this paper. Recall that
there may be a strata with a sphere bubble with the main disc component hav-
ing constant homotopy class. This is of codimension one, not of codimension
two, in part because this is not a stable map configuration. But the constant
discs cannot intersect k-different configuration of points, hence they do not
appear in the above cobordism.

We begin the proof of the theorem. First, we have the following lemma,
which we prove at the end of this section.

Lemma 4.2 (cf. Proposition 23.2 [3]).
OMok(B) = (=1)*Mo k,41(B1) ev; Xevo Mo ka+1(B2),
where € = (kl — 1)(k2 — 1) +n+k; + (Z - 1)(’(72 + 1)
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Remark 4.2. The actual sign of this formula is not important but only the fact
that it is the same for 83 and 7.(82). Hence we postpone its proof to the end
of this section.

It is also easy to note that

A({t} x Mok(B, J2)) = (=1)Ht} x (Mo k,11(B1) evi Xevo Mok +1(B2))-

There are evaluation maps at the remaining marked points which we denote
as

ky.k
Evﬁllﬁzz : MO,kﬁ-l(ﬁl) ev; Xevo MOJCTH(ﬂ?) - Lk1+k2’

EV;f;;t ) X (Mo gy 1081, Jb) evs Xevo Mo gat1(B2, Je)) — LFHF2.

Now, the boundary contributions resulting from the reducible curves can be
written as

(4.2) (=D (BVEE) T (1)),
(4.3) () BV T @),

It is easy to see that the difference of the orientations of (4.2) in the case
of (81, B2) and the case of (31, 7.52), is originated from the difference of orien-
tations in My, 11(B2) and My,11(7.B2). (Note that we obtain the same (4.2)
in each case as unoriented sets.) This can be done exactly as in the previous
section. The same is true for (4.3). Hence the cancellation is determined by
(3.5) and (3.6)

Therefore we only need to show that these matching pairs of reducible curves
are oriented in the opposite way when they contribute to the cobordisms (4.2)
or (4.3).

Now, we first observe that to have a nontrivial preimage either in (4.2) or
(4.3), the dimension of the moduli space Mgk, (B32) should at least kon — 1.
(We restrict the evaluation map to L2, and the image should be at least
codimension one to have a non-trivial intersection in both case.) Hence,

(4.4) dim{Mo k. (B2)) = n + #(B2) — 3+ ky > kon ~ 1.
Therefore

o) 2 kaln—1)+2—n.
Then,

w(B) = u(B) — u(B2)
< kin—-1)+3-n—(keln—1)+2-n)
= kl(n— 1)+1

By applying the same argument starting from 31, we have obtained the follow-
ing inequality once we assume the intersection (4.2) or (4.3) is non-trivial:

(4.5) kiin—1)+2—-n<u(B) <k(n-1)+1 for eachi.

Now we consider the cases of dim(L) = 2 and dim(L) = 3 separately.
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(1) The case dim(L) = n = 2. We show that B-count is well-defined
(A-count is not well-defined in this case).
The above inequality becomes

ki < p(Bi) < ki + 1.

And also we have u(8) = k+ 1 from (2.3). Note that k must be odd as
we assume L is orientable (hence p is even). This implies that k& splits
into an even number, say k; and an odd number, say k2. Then, from
the above inequality, we have u(61) = k1 and pu(82) = k2 + 1.

For the proof of the invariance, we show that the evaluation image
of Mo k,+1(0) has an opposite orientation as the evaluation image of
Mo i, +1(7+3) for both ¢ = 0,1 (In fact, it is enough to show only one
of them for the proof).

More precisely, the change of sign due to the Proposition 2.1 plus
the sign from the cyclic ordering permutation is as follows. For even
kl,

ki +2(ki+ 1)+ (b, — Dk =k 42 (mod 4).

But k? is always a multiple of 4, hence from the proposition, it is
orientation reversing. For odd ks,

ko +1+2(ka+1)+ (k2 — k2 =k3+1  (mod 4).

But k? is always of type 4j+1, hence from the proposition, it is orienta-
tion reversing. This proves the invariance of counting for dim(L) = 2.

(2) The case dim(L) = n = 3. In this case we show that A-count is well-
defined. From the inequality (4.5), we have

2k; — 1 < p(Bi) < 2k + 1.

But, since u(8;) is an even number, we have u(3;) = 2k; for i = 1,2.
It is enough to show that we have u(8;)/2 + k; + 1 is odd. But, it is
obvious since p(53;)/2 + k; + 1 = 2k; + 1 is always odd. This finishes
the proof of invariance for the case dim(L) = 3.

O

Proof. This is the proof of the Lemma 4.2. We modify the result given in
Proposition 23.2 [3] which can be stated as

IMo(8) = (1)t Dlka=Ddntk pgo 1 (B1) evy Xevy Mo,ka+1(B2)-

The only difference here from our lemma is that the B2 disc intersect 5, disc
at the first marked point, where as in our case it intersects at the i-th marked
point. (We assume the readers are familiar to the Proposition 23.2 for this
proof) To remedy it, We first reorder the orientation of the marked points of

Mo x(B) as
(0D3)---(8Dj_,) — (0D ;) -+ (8D}_,)(8D3) - -- (8D} ),
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where 0D? denotes the i-th marked point for i = 0,...,k — 1. This provides
a sign (—1)0~*+DG-1 " Now, we apply the proposition which now splits at
i-th marked point of 81 disc. Then, the ordering of the marked points of the
resulting space Mg i, +1(581) is
(0D7_1)(0DF) (0D, ,) - -~ (0D ).
To return to the original order of marked points, we need additional sign
(_1)(i—l)(2+k-i—k2+2)‘

Hence by summing up the two sign factors, we prove the lemma. (]

5. The case of real configuration of points

The main invariance theorem can be extended to the case of real configu-
ration of points. Let @ = {x1,..., 2k} be the configuration of k points on the
symplectic manifold M. We call x is the real configuration of k points if

{r(z1), ..., 7(zx)} =4{z1,. .., zx }.
We denote by r the number of real points x; with 7(z;) = z;, and denote
by 2¢ = k — r. Then, there are ¢ conjugate pairs in this real configuration of
points. Now, we assume without loss of generality that the real configuration
is arranged so that (z1,22),...,(®2.—1,%2.) form conjugate pairs. Then, for
any such real configuration x, we consider
X(:l:) 1= {(tl, coostey TacH1, - - a:k)|tj =xg; Ort; = Toj 1 = T(.’L’gj) for1 <j5< C}.

We define a count of J-holomorphic discs which intersect r real points at the
boundary and intersect either of ¢ conjugate pairs at the interior. Consider the
evaluation map Ev rg) : Mcr(6) — M x L” defined by,

(w28 s 200,200 oy 2re1) = (u(eg ) -y u(20 ), u(z0), - - - u(zr—1)).

Then, we define the signed counting as
= ﬁ( U Ev(crﬁ) 1(X(:l))),
v8,8c=a

where I = A or B depending on the sign of the moduli spaces. It is not hard
to check that such a count is finite if the equation (2.3) holds.

Proposition 5.1. Theorem 4.1 holds also for the real configuration of points.

Proof. To compare the change of an orientation under the conjugation, we
consider the following commuting diagram, which is a modified version of (2.2).

Mep(B) T Mo Ly
(5.1) Te | (7e,id) |

Mc,'r“(ﬁs{ﬁ)) E’“(f_m_,;*m M x L
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Here 7. : M® — M°¢ defined by (z1,...,zc) — (7(%1),...,7(z.)) and

\ + s
W, 25 oo, 200,20, -y Zr—1) = (W, 28 .oy 201,20, -+, Zrm1)-

Lemma 5.2. The map 7. is orientation preserving if and only if p(8) + 2¢1 +
2r = 0 (mod 4). And the map 7. is orientation preserving if and only if c -
dim(M) =0 (mod 4).

The proof of the lemma follows from the Proposition 2.1 with the fact that
conjugation C¢ — C¢ is orientation preserving if and only if ¢ is even.

It is easy to see that there is a bijection between the sets (Ev(., . g)) ' (X ())
and (Ev(r ) (X (x)). And we compare their orientations by considering
the orientation changes under both maps, 7. and (7¢,id) together from the
diagram 5.1.

In the case of A-count with dim(L) = 3, the both inverse images carry the
same orientations since

w(B) +2c+2r+6c=p(B)+2k=0 (mod 4).

The last line follows from the table in Section 2.3. In the case of B-count with
dim(L) = 2, the both inverse image carry the same orientation as

pB)+2c+2r+0+(r-2)r-1)=r*+3=0 (mod 4).

Here we use the fact that u(8) = k + 1 for dim(L) = 2.

Hence the same table as in the Section 2.3 works for these cases, which
shows that the contribution from the conjugating discs do not cancel out in
these cases.

Now, we consider the proof of the invariance of the counting. We first show
that the we obtain the same inequality (4.5) for the case relevant to the proof.
Suppose in the limit we have a stable disc with the domain consists of two disc
components 3; and 2. We assume that each component has ¢; interior marked
points and r; boundary marked points. we consider Ev, r, g,) : Mey,r, (8) —
M*2 x L™. (The case we vary an almost complex structure J; can be done
analogously and we omit the proof in that case). Now, we observe as before that
this stable limit curve will contribute to the counting if the image of Ev, r, g,)
is at most of codimension one. Hence, we have

n+u(B2) —3+2co+ra>co-2n+r2-n—1=kon—1.

Note that this is the same inequality as (4.4), hence we obtain the same in-
equality (4.5).

Now we can show the cancellation of the image of reducible curves as in
the proof of the main theorem. We compare the sign of Ev(c; ri+1,3;,) and
Ev(c; ri+1,7.5;) upon the condition (4.5). First, we consider the case dim(L) =
2. We may assume without loss of generality that k; is even and k; is odd
and pu(B1) = k1 and u(B2) = k2 + 1. The fact that they have the opposite
orientations follow from

p(B)+2c1+2(m+1)+ri(rn—1)=r4+2r +2=2 (mod 4),
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w(B2) +2ca+2(ra+ 1) +ro(ra —1) =75 +2ro +3=2  (mod 4),
where the last equalities follow because 7, is even and 7o is odd.
For the case dim(L) = 3, they still have the opposite orientations because

p(Bi) +2¢;i +2(rs + 1) + 2¢; = 2k; + 4e; + 2r; +2=4k; +2=2  (mod 4).

Hence we obtain the main theorem for the real configuration of points. O

6. Remark about the moduli spaces

Here, we state rather well-known facts about moduli space of real J-holo-
morphic spheres or discs.

Recall from [7] that a k-dimensional pseudo-cycle in M is a smooth map
f 'V — M defined on an oriented k-dimensional manifold V such that the
dim(§2;) < dim(V) — 2, where Qf = Nicvicep: f(V = K). Let W be an
oriented k-dimensional manifold W with codimension one boundary, then we
will call a smooth map F': W — M a pseudo-chain if dim(Qr) < k — 2. For
W a certain moduli space of holomorphic discs, we say that a pseudo-chain
f W — M defines a pseudo-cycle modulo disc bubbling if all the codimension
one boundary 0W occur due to disc bubbling phenomenons on the moduli
space W.

We denote by RM(M,a)* the moduli space of simple real J-holomorphic

spheres which preserve real structures. Namely, u : (§%,conj) — (M, T) satis-
fies

u(conj(z)) = 7(u(z)).

Here a € Hy(M) is a spherical homology class. Recall that in [7], it was shown
that the moduli space of simple J-holomorphic spheres form a pseudo-cycle
for a generic J in the strongly semi-positive case. In the case of simple real
J-holomorphic spheres, the similar results holds in the following way. First,
as shown in [10] the linearized & operator, D is Z/2Z-equivariant, where the
actions are given by the involutions. Hence for a generic J with 7,J = —J, one
can show that the moduli space of simple real non-singular J-holomorphic
spheres form a smooth manifold by considering the equivariant version of
the proof given in [7]. Moreover, in the case of real J-holomorphic curves,
Gromov-compactness, and gluing of the two real J-holomorphic curves work
as in the case of [7]. This is because the Lemma 6.1.2 of [7] can be proved
Z/2Z-equivariantly as D and u are Z/2Z-equivariant. The lemma states that
for the space of compatible almost complex structures 7, the evaluation map
ev, : M(A,J)* — M for a fixed z € CP! is submersive, and it was crucially
used to show that the moduli spaces form a pseudo-cycle, and to make the
gluing of two J-holomorphic curves work.

Hence, everything mentioned above also works equally well for M(3), the
moduli space of 7-simple J-holomorphic discs. Here we call J-holomorphic disc
w, T-simple if w is injective away from a discrete set of points in the interior of
D?, and additionally, its complex double wg is a simple J-holomorphic sphere.
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(w is injective at p if du(p) # 0 and v~ (u(p)) = {p}). This is the moduli space
which is used throughout the paper.

It can be shown that non-simple real J-holomorphic spheres have images of
codimension two or higher, either by using the structure theorem of real holo-
morphic discs, or by using the general structure theorem of pseudo-holomorphic
discs by Kwon and Oh [6]. Hence for the intersection theory, we may consider
only 7-simple holomorphic discs.
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