DOI QR코드

DOI QR Code

Preparation of ZnO@TiO2 nano coreshell structure by the polymerized complex and sol-gel method

착체중합법과 sol-gel법에 의한 ZnO@TiO2 나노 코아쉘 구조의 제조

  • Lim, Chang Sung (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2008.04.29
  • Accepted : 2008.05.27
  • Published : 2008.06.25

Abstract

Nano core shell structures of $TiO_2$ particles coated on surface of ZnO nanoparticles were prepared by the polymerized complex and sol-gel method. The average particle size of ZnO by the polymerized complex method showed 100 nm and the average particle size of $TiO_2$ by the sol-gel method showed below 10 nm. The average particle size of $ZnO@TiO_2$ nano core shell struture represented about 150 nm. The agglomeration between the ZnO particles using the polymerized complex method was highly controlled by the uniform absorption of $TiO_2$ colloid on the spherical ZnO surfaces. The driving force of heterogeneous bonding between ZnO and $TiO_2$ was induced by the Coulomb force. The ZnO and $TiO_2$ particles electrified with + and - charges, respectively, resulted in strong bonding by the difference of iso-electric point (IEP) when they laid neutrality pH area, depending on the heterogeneous surface electron electrified by the different zeta potential on the pH values.

착체중합법과 sol-gel법을 이용하여 ZnO 나노입자 표면상에 $TiO_2$ 입자를 코팅한 나노 코아쉘 구조를 제조하였다. 착체중합법으로 제조된 ZnO 입자는 평균입도가 약 100 nm, sol-gel법으로 제조된 $TiO_2$ 입자는 10 nm 이하의 크기로 각각 구성되었다. $ZnO@TiO_2$ 나노 코아쉘 구조의 평균입도는 약 150 nm의 크기를 나타내었다. 착체중합법으로 제조된 구형의 ZnO 나노 입자는 콜로이드상의 $TiO_2$ 입자의 균일한 표면흡착으로 인해 착체중합법으로 제조된 ZnO 입자의 입자간 응집이 크게 제어되었다. ZnO와 $TiO_2$의 이종 입자간의 표면전하는 pH 7 근처의 중성 영역에서 iso-electric point (IEP)의 차이로 인하여 - 로 대전된 $TiO_2$와 + 로 대전된 ZnO 나노입자의 이종의 입자들이 쿨롱의 인력에 의해 서로간의 결합을 하게 되고, 결합을 이룬 $ZnO@TiO_2$ 나노 코아쉘 구조가 표면 전하가 zero가 되어 발생하게 된다.

Keywords

References

  1. B. Zhu, X. T. Yang, J. Xu, Z. G. Zhu, S. J. Ji, M. T. Sun, and J. C. Sun, J. Power Sources, 118, 1-2, 47(2003) https://doi.org/10.1016/S0378-7753(03)00054-5
  2. Y. Han, S. H. Hong and K. Xu, Materials Letters, 56, 5, 744-747(2002) https://doi.org/10.1016/S0167-577X(02)00606-7
  3. H. K. Lonsdale, J. Membrane. Sci. 23, 1, 111(1985) https://doi.org/10.1016/S0376-7388(00)83139-7
  4. H. B. Hopfenberg, H. Strathmann, and A. S. Michaels, J. Membrane. Sci. 15, 3, 317(1983) https://doi.org/10.1016/S0376-7388(00)82307-8
  5. R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, T. Sato, Materials Chemistry and Physics, 75, 39(2002) https://doi.org/10.1016/S0254-0584(02)00027-5
  6. H. Jiang, L. Gao, Materials Chemistry and Physics, 77, 878(2002) https://doi.org/10.1016/S0254-0584(02)00206-7
  7. A. salvador, M. C. Pascual-Marti, J. R. Adell, A. Requeni, J. G. March, J. Pharmaceutical and Biomedical Analysis, 22, 301(2000) https://doi.org/10.1016/S0731-7085(99)00286-1
  8. A. V. Diken, E. A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Luminescence, 87-89, 454(2000) https://doi.org/10.1016/S0022-2313(99)00482-2
  9. F. Rancan, S. Rosan, K. Boehm, E. Fernndez, M. E. Hidalgo, W. Quihot, C. Rubio, F. Boehm, H. Piazena, U. Oltmanns, J. Photochemistry and photobiology B, 68, 133(2002) https://doi.org/10.1016/S1011-1344(02)00362-7
  10. M. P. Pechini, United States Patent Office, 3, 33, 697, Patented by July 11, 1967
  11. S. W. Yun, Y. Shin and S. G. Cho, J. Korean Ceramic Society, 35, 5, 498(1998)
  12. Y. J. Kwon, K. H. Kim, C. S. Lim and K. B. Shim, J. Ceramic Process Research, 3, 3, 146(2002)
  13. C. J. Brinker and G. W. Scherer, Sol-gel Science, Academic Press, San Diego, 1990
  14. D. W. Schaefer, J. E. Martin, P. Wiltzius, D. S. Cannell, In kinetics of Aggregation and Gelation, page 71, Elsevier Science Publishers B.V. 1984
  15. R. G. Avery and J. D. F. Ramsay, In Adsorption and Catalysis on Oxides, page 149, 1985
  16. W. B. Russel, D. A. Savile, W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, 1989
  17. S. Kim, C. F. Zukoski, J. Colloid Interface Sci. 139, 198(1990) https://doi.org/10.1016/0021-9797(90)90457-Y