DOI QR코드

DOI QR Code

The Effects of Cellulose, Pectin and Starch on Standardized Ileal and Apparent Total Tract Amino Acid Digestibilities and Bacterial Contribution of Amino Acids in Feces of Growing Pigs

  • Ma, Q.G. (National Lab of Animal Nutrition, China Agricultural University (CAU)) ;
  • Metzler, B.U. (Institute of Animal Nutrition, University of Hohenheim) ;
  • Eklund, M. (Institute of Animal Nutrition, University of Hohenheim) ;
  • Ji, C. (National Lab of Animal Nutrition, China Agricultural University (CAU)) ;
  • Mosenthin, R. (Institute of Animal Nutrition, University of Hohenheim)
  • Received : 2007.08.24
  • Accepted : 2007.10.18
  • Published : 2008.06.01

Abstract

Eight ileally cannulated pigs (BW $35.9{\pm}0.9kg$) were randomly allotted according to a $4{\times}3$ Latin square design to determine the effects of cellulose, pectin and starch on standardized ileal digestibility (SID) and apparent total tract digestibility (ATTD) of crude protein (CP) and amino acids (AA) as well as on the bacterial AA contribution in feces. The pigs were fed the control diet (20.2% CP, % dry matter (DM)) or one of the three experimental diets in which 25% of the control diet was substituted by cellulose, starch or pectin. Due to this substitution, dietary CP levels were lower in the cellulose (15.5% CP, % DM), pectin (15.4% CP, % DM) and starch diet (15.2% CP, % DM). Following a 15-d adaptation period, feces were collected for 5 d and ileal digesta for a total of 24 h. Starch increased SID of CP, while cellulose and pectin had no significant effect on the digestibility of CP. Overall, starch supplementation resulted in higher (p<0.05) SID values of histidine, isoleucine, threonine, alanine, aspartic acid, cysteine, glycine and serine compared with cellulose, while pectin decreased (p<0.05) SID of valine and proline compared with the starch and control diet. Both cellulose and pectin reduced (p<0.05) the ATTD of CP and AA, while starch decreased (p<0.05) ATTD of phenylalanine, alanine, proline and serine compared with the control. With regard to bacterial AA composition of the fecal mixed bacterial mass (MBM), cellulose supplementation increased (p<0.05) its content of N and almost all AA, except for valine, while pectin caused higher contents of arginine, histidine and proline compared with the control (p<0.05). The bacterial contribution of arginine in feces was higher (p<0.05) in the cellulose treatment, while pectin reduced (p<0.05) the bacterial contribution of leucine, alanine, glutamic acid and proline in feces compared with the control. In conclusion, the effects of cellulose, starch and pectin on SID were rather small. Bacterial activity in the large intestine can only explain the reduced ATTD values for arginine in the cellulose treatment, but not for the other AA in the cellulose and pectin treatments, suggesting higher endogenous losses of these AA in the large intestine.

Keywords

References

  1. Bach Knudsen, K. E. 2001. The nutritional significance of "dietary fibre" analysis. Anim. Feed Sci. Technol. 90:3-20. https://doi.org/10.1016/S0377-8401(01)00193-6
  2. Bach Knudsen, K. E. and H. Jorgensen. 2001. Intestinal degradation of dietary carbohydrates - from birth to maturity. In: Digestive Physiology in Pigs (Ed. J. E. Lindberg and B. Ogle). CABI Publishing, Wallingford, UK. pp. 109-120.
  3. Bedford, M. R. and H. Schulze. 1998. Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 11:91-114. https://doi.org/10.1079/NRR19980007
  4. Caine, W. R., S. Tamminga, W. C. Sauer, M. W. A. Verstegen and H. Schulze. 1999. Bacterial contributions to total and endogenous recoveries of nitrogen and amino acids in ileal digesta of newly weaned piglets fed protease-treated soybean meal. Livest. Prod. Sci. 57:147-157. https://doi.org/10.1016/S0301-6226(98)00168-7
  5. De Lange, C. F. M., W. C. Sauer, R. Mosenthin and W. B. Souffrant. 1989. The effect feeding different protein-free diets on the recovery and amino acid composition of endogenous protein collected from the distal ileum and feces in pigs. J. Anim. Sci. 67:746-754. https://doi.org/10.2527/jas1989.673746x
  6. Den Hartog, L. A., J. Huisman, W. J. G. Thielen, G. H. A. Van Schayk, H. Boer and E. J. Weerden. 1988. The effect of including various structural polysaccharides in pig diets on ileal and faecal digestibility of amino acids and minerals. Livest. Prod. Sci. 18:157-170. https://doi.org/10.1016/0301-6226(88)90005-X
  7. DLG, Deutsche Landwirtschaftsgesellschaft (German Agricultural Society). 1991. DLG-Futterwerttabellen fur Schweine. 6th ed. DLG-Verlag, Frankfurt am Main, Germany
  8. Dufva, G. S., E. E. Bartley, M. J. Arambel, T. G. Nagaraja, S. M. Dennis, S. J. Galitzer and A. D. Dayton. 1982. Diaminopimelic acid content of feeds and rumen bacteria and its usefulness as a rumen bacterial marker. J. Dairy Sci. 65:1754-1759. https://doi.org/10.3168/jds.S0022-0302(82)82412-0
  9. Ide, T., M. Hori, T. Yamamoto and K. Kawashima. 1990. Contrasting effects of water-soluble and water-insoluble dietary fibers on bile acid conjugation and taurine metabolism in the rat. Lipids 25:335-340. https://doi.org/10.1007/BF02544343
  10. Jansman, A. J. M., W. Smink, P. van Leeuwen and M. Rademacher. 2002. Evaluation through literature data of the amount and amino acid composition of basal endogenous crude protein at the terminal ileum of pigs. Anim. Feed Sci. Technol. 98:49-60. https://doi.org/10.1016/S0377-8401(02)00015-9
  11. Jin, L., L. P. Reynolds, D. A. Redmer, J. S. Caton and J. D. Crenshaw. 1994. Effects of dietary fiber on intestinal growth, cell proliferation and morphology in growing pigs. J. Anim. Sci. 72:2270-2278. https://doi.org/10.2527/1994.7292270x
  12. Li, S., W. C. Sauer and M. Z. Fan. 1993. The effect of dietary crude protein level on amino acid digestibility in early-weaned pigs. J. Anim. Physiol. Anim. Nutr. 70:26-37. https://doi.org/10.1111/j.1439-0396.1993.tb00303.x
  13. Lorz, A. and E. Metzger. 1999. Tierschutzgesetz: Tierschutzgesetz mit allgemeiner Verwaltungsvorschrift, Rechtsverordnungen und Europaische Ubereinkommen; Kommentar. 5th ed. Munich, Germany.
  14. McDonald, D. E., D. W. Pethick, B. P. Mullan and D. J. Hampson. 2001. Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newlyweaned pigs. Br. J. Nutr. 86:487-498. https://doi.org/10.1079/BJN2001416
  15. Metzler, B. U., T. Baumgartel, R. Mosenthin and M. Rodehutscord. 2006. Fermentable carbohydrates affect the chemical composition of the faecal mixed bacterial mass, microbial activity and P metabolism in the large intestine of pigs. Page 27 in Proc. and CD-Rom International Conference on Sustainable Animal Health through Eubiosis - Relevance for Man, Ascona, Switzerland.
  16. Metzler, B. U., R. Mosenthin, T. Baumgartel and M. Rodehutscord. 2007a. Effects of fermentable carbohydrates and low dietary phosphorus supply on chemical composition of faecal bacteria and microbial metabolites in the gastrointestinal tract of pigs. J. Anim. Physiol. Anim. Nutr., accepted.
  17. Metzler, B. U., W. Vahjen, T. Baumgartel, M. Rodehutscord and R. Mosenthin. 2007b. Effects of fermentable carbohydrates on the intestinal microbial ecosystem in growing pigs fed low-P diets. J. Anim. Aci. 85 (Suppl. 1):147.
  18. Mosenthin, R. and M. Rademacher. 2003. Digestible amino acids in diet formulation for pigs. In: Amino Acids in Animal Nutrition, 2nd Ed. (Ed. J. P. F. D'Mello). CABI Publishing, Wallingford, UK. pp. 169-186
  19. Mosenthin, R., W. C. Sauer and F. Ahrens. 1994. Dietary pectin's effect on ileal and fecal amino acid digestibility and exocrine pancreatic secretions in growing pigs. J. Nutr. 124:1222-1229. https://doi.org/10.1093/jn/124.8.1222
  20. Naumann, K. R. and R. Bassler. 1997. Die chemische Untersuchung von Futtermitteln. VDLUFA, Darmstadt, Germany.
  21. Sakata, T. and H. Setoyama. 1995. Local stimulatory effect of short-chain fatty acids on the mucus release from the hindgut mucosa of rats (Rattus norvegicus). Comp. Biochem. Physiol. 111:429-432. https://doi.org/10.1016/0300-9629(95)00033-4
  22. SAS, 2001. SAS/STAT, Release 8.2. SAS Inst. Inc., Cary, NC, USA.
  23. Sauer, W. C., R. Mosenthin, F. Ahrens and L. A. den Hartog. 1991. The effect of source of fiber on ileal and fecal amino acid digestibility and bacterial nitrogen excretion in growing pigs. J. Anim. Sci. 69:4070-4077. https://doi.org/10.2527/1991.69104070x
  24. Souffrant, W. B. 1991. Endogenous nitrogen losses during digestion in pigs. In: Proceedings of the 5th International Symposium on Digestive Physiology in Pigs (Ed. M. Verstegen, J. Huisman and L. A. den Hartog). Wageningen, The Netherlands. pp. 147-166.
  25. Souffrant, W. B. 2001. Effect of dietary fibre on ileal digestibility and endogenous nitrogen losses in the pig. Anim. Feed Sci. Technol. 90:93-102. https://doi.org/10.1016/S0377-8401(01)00199-7
  26. Stein, H. H., M. F. Fuller, P. J. Moughan, B. Seve, R. Mosenthin, A. J. M. Jansman, J. A. Fernandez and C. F. M. de Lange. 2007. Short communication: Definition of apparent, true, and standardized ileal digestibility of amino acids in pigs. Livest. Sci. 109:282-285. https://doi.org/10.1016/j.livsci.2007.01.019
  27. Varel, V. H. and J. T. Yen. 1997. Microbial perspective on fibre utilization by swine. J. Anim. Sci. 75:2715-2722. https://doi.org/10.2527/1997.75102715x
  28. Wang, J. F., B. B. Jensen, H. Jorgensen, D. F. Li and J. E. Lindberg. 2002. Ileal and total tract digestibility, and protein and fat balance in pigs fed rice with addition of potato starch, sugar beet pulp or wheat bran. Anim. Feed Sci. Technol. 102:125-136. https://doi.org/10.1016/S0377-8401(02)00257-2
  29. Wang, J. F., Y. H. Zhu, D. F. Li, H. Jorgensen and B. B. Jensen. 2004. The influence of different fiber and starch types on nutrient balance and energy metabolism in growing pigs. Asian-Aust. J. Anim. Sci. 17:263-270. https://doi.org/10.5713/ajas.2004.263
  30. Wang, J. F., M. Wang, D. G. Lin, B. B. Jensen and Y. H. Zhu. 2006. The effect of source of dietary fiber and starch on ileal and fecal amino acid digestibility in growing pigs. Asian-Aust. J. Anim. Sci. 19:1040-1046. https://doi.org/10.5713/ajas.2006.1040
  31. Yang, W. Z., K. A. Beauchemin and L. M. Rode. 2001. Effect of dietary factors on distribution and chemical composition of liquid- or solid-associated bacterial populations in the rumen of dairy cows. J. Anim. Sci. 79:2736-2746. https://doi.org/10.2527/2001.79102736x
  32. Yin, Y. L., Z. Y. Deng, H. L. Huang, H. Y. Zhong, Z. P. Hou, J. Cong and Q. Liu. 2004. Nutritional and health functions of carbohydrate for pigs. J. Anim. Feed Sci. 13:523-538.
  33. Zimmermann, B., H.-J. Lantzsch, R. Mosenthin, F.-J. Schöner, H. K. Biesalski and W. Drochner. 2002. Comparative evaluation of the efficacy of cereal and microbial phytases in growing pigs fed diets with marginal phosphorus supply. J. Sci. Food Agric. 82:1298-1304. https://doi.org/10.1002/jsfa.1190

Cited by

  1. Effects of corn gluten feed inclusion at graded levels in a corn-soybean diet on the ileal and fecal digestibility of growing pigs vol.5, pp.1, 2014, https://doi.org/10.1186/2049-1891-5-40