Ameliorating Effects of Sulfonylurea Drugs on Insulin Resistance in Otsuka Long-Evans Tokushima Fatty Rats

  • Park, Jeong-Kwon (Departments of Physiology and Chronic Disease Research Center, Keimyung University School of Medicine) ;
  • Kim, Sang-Pyo (Departments of Pathology, Keimyung University School of Medicine) ;
  • Song, Dae-Kyu (Departments of Physiology and Chronic Disease Research Center, Keimyung University School of Medicine)
  • Published : 2008.02.28

Abstract

OLETF (Otsuka Long-Evans Tokushima Fatty) rats are characterized by obesity-related insulin resistance, which is a phenotype of type 2 diabetes. Sulfonylurea drugs or benzoic acid derivatives as inhibitors of the ATP-sensitive potassium $(K_{ATP})$ channel are commercially available to treat diabetes. The present study compared sulfonylurea drugs (glimepiride and gliclazide) with one of benzoic acid derivatives (repaglinide) in regard to their long-term effect on ameliorating insulin sensitivity in OLETF rats. Each drug was dissolved and fed with drinking water from 29 weeks of age. On high glucose loading at 45 weeks of age, response of blood glucose recovery was the greatest in the group treated with glimepiride. On immunohistochemistry analysis for the Kir6.2 subunit of $K_{ATP}$ channels, insulin receptor ${\beta}$-subunits, and glucose transporters (GLUT) type 2 and 4 in liver, fat and skeletal muscle tissues, the sulfonylurea drugs (glimepiride and gliclazide) were more effective than repaglinide in recovery from their decreased expressions in OLETF rats. From these results, it seems to be plausible that $K_{ATP}$-channel inhibitors containing sulfonylurea moiety may be much more effective in reducing insulin resistance than those with benzoic acid moiety. In contrast to gliclazide, non-tissue selectivity of glimepiride on $K_{ATP}$ channel inhibition may further strengthen an amelioration of insulin sensitivity unless considering other side effects.

Keywords

References

  1. Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409: 729-733, 2001 https://doi.org/10.1038/35055575
  2. Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115: 2047-2058, 2005 https://doi.org/10.1172/JCI25495
  3. Bajaj M, Defronzo RA. Metabolic and molecular basis of insulin resistance. J Nucl Cardiol 10: 311-323, 2003 https://doi.org/10.1016/S1071-3581(03)00520-8
  4. Boyd JJ, Contreras I, Kern M, Tapscott EB, Downes DL, Frisell WR, Dohm GL. Effect of a high-fat-sucrose diet on in vivo insulin receptor kinase activation. Am J Physiol 259: E111-116, 1990
  5. Eisenberg ML, Maker AV, Slezak LA, Nathan JD, Sritharan KC, Jena BP, Geibel JP, Andersen DK. Insulin receptor (IR) and glucose transporter 2 (GLUT2) proteins form a complex on the rat hepatocyte membrane. Cell Physiol Biochem 15: 51-58, 2005 https://doi.org/10.1159/000083638
  6. Handberg A, Vaag A, Damsbo P, Beck-Nielsen H, Vinten J. Expression of insulin regulatable glucose transporters in skeletal muscle from type 2 (non-insulin-dependent) diabetic patients. Diabetologia 33: 625-627, 1990 https://doi.org/10.1007/BF00400207
  7. Hughes VA, Fiatarone MA, Fielding RA, Kahn BB, Ferrara CM, Shepherd P, Fisher EC, Wolfe RR, Elahi D, Evans WJ. Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Physiol 264: E855-862, 1993
  8. Kahn BB. Lilly lecture 1995. Glucose transport: pivotal step in insulin action. Diabetes 45: 1644-1654, 1996 https://doi.org/10.2337/diabetes.45.11.1644
  9. Kawamori R, Morishima T, Kubota M, Matsuhisa M, Ikeda M, Kamada T. Influence of oral sulfonylurea agents on hepatic glucose uptake. Diabetes Res Clin Pract 28 Suppl: S109-113, 1995 https://doi.org/10.1016/0168-8227(95)01074-N
  10. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41: 1422-1428, 1992 https://doi.org/10.2337/diabetes.41.11.1422
  11. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 95: 2111-2119, 1995 https://doi.org/10.1172/JCI117899
  12. Koike T, Tomoda F, Kinuno H, Inoue H, Takata M. Abnormal renal structural alterations during the development of diabetes mellitus in Otsuka Long-Evans Tokushima Fatty rats. Acta Physiol Scand 184: 73-81, 2005 https://doi.org/10.1111/j.1365-201X.2005.01418.x
  13. Kumar N, Dey CS. Gliclazide increases insulin receptor tyrosine phosphorylation but not p38 phosphorylation in insulin-resistant skeletal muscle cells. J Exp Biol 205: 3739-3746, 2002
  14. Lebovitz HE, Feinglos MN, Bucholtz HK, Lebovitz FL. Potentiation of insulin action: a probable mechanism for the anti-diabetic action of sulfonylurea drugs. J Clin Endocrinol Metab 45: 601-604, 1977 https://doi.org/10.1210/jcem-45-3-601
  15. Marin P, Rebuffe-Scrive M, Smith U, Bjorntorp P. Glucose uptake in human adipose tissue. Metabolism 36: 1154-1160, 1987 https://doi.org/10.1016/0026-0495(87)90242-3
  16. Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, Tamamoto A, Gonoi T, Iwanaga T, Miyazaki J, Seino S. Defective insulin secretion and enhanced insulin action in $K_{ATP}$ channel-deficient mice. Proc Natl Acad Sci U S A 95: 10402-10406, 1998
  17. Minami K, Morita M, Saraya A, Yano H, Terauchi Y, Miki T, Kuriyama T, Kadowaki T, Seino S. ATP-sensitive $K^+$ channel-mediated glucose uptake is independent of IRS-1/phosphatidylinositol 3-kinase signaling. Am J Physiol Endocrinol Metab 285: E1289-1296, 2003 https://doi.org/10.1152/ajpendo.00278.2003
  18. Mori Y, Komiya H, Kurokawa N, Tajima N. Comparison of the effects of glimepiride and glibenclamide on adipose tissue tumour necrosis factor-alpha mRNA expression and cellularity. Diabetes Obes Metab 6: 28-34, 2004 https://doi.org/10.1111/j.1463-1326.2004.00305.x
  19. Muller G, Satoh Y, Geisen K. Extrapancreatic effects of sulfonylureas- a comparison between glimepiride and conventional sulfonylureas. Diabetes Res Clin Pract 28 Suppl: S115-137, https://doi.org/10.1016/0168-8227(95)01089-V
  20. Pedersen O, Bak JF, Andersen PH, Lund S, Moller DE, Flier JS, Kahn BB. Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 39: 865-870, 1990 https://doi.org/10.2337/diabetes.39.7.865
  21. Rodriguez E, Pulido N, Romero R, Arrieta F, Panadero A, Rovira A. Phosphatidylinositol 3-kinase activation is required for sulfonylurea stimulation of glucose transport in rat skeletal muscle. Endocrinology 145: 679-685, 2004 https://doi.org/10.1210/en.2003-0755
  22. Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes 51 Suppl 3: S368-376, 2002 https://doi.org/10.2337/diabetes.51.2007.S368
  23. Schernthaner G, Grimaldi A, Di Mario U, Drzewoski J, Kempler P, Kvapil M, Novials A, Rottiers R, Rutten GE, Shaw KM. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Invest 34: 535-542, 2004 https://doi.org/10.1111/j.1365-2362.2004.01381.x
  24. Toide K, Man ZW, Asahi Y, Sato T, Nakayama N, Noma Y, Oka Y, Shima K. Glucose transporter levels in a male spontaneous non-insulin-dependent diabetes mellitus rat of the Otsuka Long-Evans Tokushima Fatty strain. Diabetes Res Clin Pract 38: 151-160, 1997 https://doi.org/10.1016/S0168-8227(97)00101-0
  25. UKPDS. Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352: 837-853, 1998 https://doi.org/10.1016/S0140-6736(98)07019-6
  26. Wang R, Liu X, Hentges ST, Dunn-Meynell AA, Levin BE, Wang W, Routh VH. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 53: 1959-1965, 2004 https://doi.org/10.2337/diabetes.53.8.1959
  27. Wasada T, Yano T, Ohta M, Yui N, Iwamoto Y. ATP-Sensitive potassium channels modulate glucose transport in cultured human skeletal muscle cells. Endocr J 48: 369-375, 2001 https://doi.org/10.1507/endocrj.48.369