DOI QR코드

DOI QR Code

A BERRY-ESSEEN TYPE BOUND OF REGRESSION ESTIMATOR BASED ON LINEAR PROCESS ERRORS

  • Liang, Han-Ying (DEPARTMENT OF MATHEMATICS TONGJI UNIVERSITY) ;
  • Li, Yu-Yu (DEPARTMENT OF MATHEMATICS TONGJI UNIVERSITY)
  • Published : 2008.11.01

Abstract

Consider the nonparametric regression model $Y_{ni}\;=\;g(x_{ni})+{\epsilon}_{ni}$ ($1\;{\leq}\;i\;{\leq}\;n$), where g($\cdot$) is an unknown regression function, $x_{ni}$ are known fixed design points, and the correlated errors {${\epsilon}_{ni}$, $1\;{\leq}\;i\;{\leq}\;n$} have the same distribution as {$V_i$, $1\;{\leq}\;i\;{\leq}\;n$}, here $V_t\;=\;{\sum}^{\infty}_{j=-{\infty}}\;{\psi}_je_{t-j}$ with ${\sum}^{\infty}_{j=-{\infty}}\;|{\psi}_j|$ < $\infty$ and {$e_t$} are negatively associated random variables. Under appropriate conditions, we derive a Berry-Esseen type bound for the estimator of g($\cdot$). As corollary, by choice of the weights, the Berry-Esseen type bound can attain O($n^{-1/4}({\log}\;n)^{3/4}$).

Keywords

References

  1. K. Alam and K. M. L. Saxena, Positive dependence in multivariate distributions, Comm. Statist. A-Theory Methods 10 (1981), no. 12, 1183-1196 https://doi.org/10.1080/03610928108828102
  2. J. I. Baek, T. S. Kim, and H. Y. Liang, On the convergence of moving average processes under dependent conditions, Aust. N. Z. J. Stat. 45 (2003), no. 3, 331-342 https://doi.org/10.1111/1467-842X.00287
  3. Z. W. Cai and G. G. Roussas, Kaplan-Meier estimator under association, J. Multivariate Anal. 67 (1998), no. 2, 318-348 https://doi.org/10.1006/jmva.1998.1769
  4. Z. W. Cai, Berry-Esseen bounds for smooth estimator of a distribution function under association, J. Nonparametr. Statist. 11 (1999), no. 1-3, 79-106 https://doi.org/10.1080/10485259908832776
  5. M. N. Chang and P. V. Rao, Berry-Esseen bound for the Kaplan-Meier estimator, Comm. Statist. Theory Methods 18 (1989), no. 12, 4647-4664 https://doi.org/10.1080/03610928908830180
  6. Z. J. Chen, H. Y. Liang, and Y. F. Ren, Strong consistency of estimators in a heteroscedastic model under NA samples, Tongji Daxue Xuebao Ziran Kexue Ban 31 (2003), no. 8, 1001-1005
  7. Y. Fan, Consistent nonparametric multiple regression for dependent heterogeneous processes: the fixed design case, J. Multivariate Anal. 33 (1990), no. 1, 72-88 https://doi.org/10.1016/0047-259X(90)90006-4
  8. A. A. Georgiev, Local properties of function fitting estimates with application to system identification, Mathematical statistics and applications, Vol. B (Bad Tatzmannsdorf, 1983), 141-151, Reidel, Dordrecht, 1985
  9. A. A. Georgiev, Consistent nonparametric multiple regression: the fixed design case, J. Multivariate Anal. 25 (1988), no. 1, 100-110 https://doi.org/10.1016/0047-259X(88)90155-8
  10. A. A. Georgiev and W. Greblicki, Nonparametric function recovering from noisy observations, J. Statist. Plann. Inference 13 (1986), no. 1, 1-14 https://doi.org/10.1016/0378-3758(86)90114-X
  11. K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist. 11 (1983), no. 1, 286-295 https://doi.org/10.1214/aos/1176346079
  12. H. Y. Liang, Complete convergence for weighted sums of negatively associated random variables, Statist. Probab. Lett. 48 (2000), no. 4, 317-325 https://doi.org/10.1016/S0167-7152(00)00002-X
  13. H. Y. Liang and J. I. Baek, Weighted sums of negatively associated random variables, Aust. N. Z. J. Stat. 48 (2006), no. 1, 21-31 https://doi.org/10.1111/j.1467-842X.2006.00422.x
  14. H. Y. Liang and B. Y. Jing, Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences, J. Multivariate Anal. 95 (2005), no. 2, 227-245 https://doi.org/10.1016/j.jmva.2004.06.004
  15. H. Y. Liang and C. Su, Complete convergence for weighted sums of NA sequences, Statist. Probab. Lett. 45 (1999), no. 1, 85-95 https://doi.org/10.1016/S0167-7152(99)00046-2
  16. P. Matula, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 (1992), no. 3, 209-213 https://doi.org/10.1016/0167-7152(92)90191-7
  17. H. G. Muller, Weak and universal consistency of moving weighted averages, Period. Math. Hungar. 18 (1987), no. 3, 241-250 https://doi.org/10.1007/BF01848087
  18. V. V. Petrov, Limit Theorems of Probability Theory, Oxford University Press, New York, 1995
  19. G. G. Roussas, Consistent regression estimation with fixed design points under dependence conditions, Statist. Probab. Lett. 8 (1989), no. 1, 41-50 https://doi.org/10.1016/0167-7152(89)90081-3
  20. G. G. Roussas, Asymptotic normality of random fields of positively or negatively associated processes, J. Multivariate Anal. 50 (1994), no. 1, 152-173 https://doi.org/10.1006/jmva.1994.1039
  21. G. G. Roussas, Asymptotic normality of the kernel estimate of a probability density function under association, Statist. Probab. Lett. 50 (2000), no. 1, 1-12 https://doi.org/10.1016/S0167-7152(00)00072-9
  22. G. G. Roussas, L. T. Tran, and D. A. Ioannides, Fixed design regression for time series: asymptotic normality, J. Multivariate Anal. 40 (1992), no. 2, 262-291 https://doi.org/10.1016/0047-259X(92)90026-C
  23. Q. M. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables, J. Theoret. Probab. 13 (2000), no. 2, 343-356 https://doi.org/10.1023/A:1007849609234
  24. Q. M. Shao and C. Su, The law of the iterated logarithm for negatively associated random variables, Stochastic Process. Appl. 83 (1999), no. 1, 139-148 https://doi.org/10.1016/S0304-4149(99)00026-5
  25. C. Su, L. C. Zhao, and Y. B. Wang, Moment inequalities and weak convergence for negatively associated sequences, Sci. China Ser. A 40 (1997), no. 2, 172-182 https://doi.org/10.1007/BF02874436
  26. L. Tran, G. Roussas, S. Yakowitz, and B. T. Van, Fixed-design regression for linear time series, Ann. Statist. 24 (1996), no. 3, 975-991 https://doi.org/10.1214/aos/1032526952
  27. S. C. Yang, Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples, Statist. Probab. Lett. 62 (2003), no. 2, 101-110 https://doi.org/10.1016/S0167-7152(02)00427-3

Cited by

  1. Berry–Esseen bounds for wavelet estimator in a regression model with linear process errors vol.81, pp.1, 2011, https://doi.org/10.1016/j.spl.2010.09.024
  2. Asymptotic properties of wavelet estimators in semiparametric regression models under dependent errors vol.122, 2013, https://doi.org/10.1016/j.jmva.2013.08.006
  3. A Berry-Esseen Type Bound of Wavelet Estimator Under Linear Process Errors Based on a Strong Mixing Sequence vol.42, pp.22, 2013, https://doi.org/10.1080/03610926.2011.642921
  4. The Berry-Esseen bounds of wavelet estimator for regression model whose errors form a linear process with a ρ-mixing vol.2016, pp.1, 2016, https://doi.org/10.1186/s13660-016-1036-x
  5. Berry-Esseen bounds of weighted kernel estimator for a nonparametric regression model based on linear process errors under a LNQD sequence vol.2018, pp.1, 2018, https://doi.org/10.1186/s13660-017-1604-8