싸이토카인 유발 췌장 ${\beta}$세포 독성에 대한 천화분 추출물의 방어효과

Protective Effect of Radix Trichosanthis Extracts on Cytotoxicity of Pancreatic ${\beta}-Cells$ by Cytokines

  • 송미영 (전북대학교 의과대학 생화학교실) ;
  • 김은경 (전북대학교 의과대학 생화학교실) ;
  • 송제호 (원광대학교 뷰티디자인학부, 생활자원개발연구소)
  • Song, Mi-Young (Department of Biochemistry, Medical School and Institute for Medical Sciences, Chonbuk National University) ;
  • Kim, Eun-Kyung (Department of Biochemistry, Medical School and Institute for Medical Sciences, Chonbuk National University) ;
  • Song, Je-Ho (Division of Beauty Design & Institute for Better Living, Wonkwang University)
  • 발행 : 2008.04.25

초록

In this study, the preventive effects of Radix Trichosanthis extracts (RTE) against cytokine-induced ${\beta}-cell$ death were assessed. Cytokines generated by immune cells infiltrating pancreatic islets are crucial mediators of ${\beta}-cell$ destruction in insulin-dependent diabetes mellitus. The treatment of RIN cells with $interleukin-1{\beta}$ ($IL-1{\beta}$) and $interferon-{\gamma}$ ($IFN-{\gamma}$) resulted in a reduction of cell viability. RTE protected $IL-1{\beta}$ and $IFN-{\gamma}$-mediated viability reduction in a concentration-dependent manner. Incubation with RTE also induced a significant suppression of $IL-1{\beta}$ and $IFN-{\gamma}$-induced inducible nitric oxide synthase (iNOS) protein expression. The molecular mechanism by which RTE inhibited iNOS protein expression appeared to involve the inhibition of $NF{-\kappa}B$ activation. The $IL-1{\beta}$ and $IFN-{\gamma}$-stimulated RIN cells showed increases in $NF{-\kappa}B$ binding activityand $I{\kappa}B{\alpha}$ degradation in cytosol compared to unstimulated cells. However, pretreatment with RTE inhibited cytokines-induced $I{\kappa}B{\alpha}$ degradation and $NF{-\kappa}B$ activation in RINm5F cells. Furthermore, the protective effects of RTE were verified via protection of impairment in glucose-stimulated insulin secretions in $IL-1{\beta}$ and $IFN-{\gamma}$-treated islets.

키워드

참고문헌

  1. Bach, J.F. Insulin-dependent diabetes mellitus as a $\beta$-cell targeted disease of immunoregulation. Journal of Autoimmunity 8(4):39-63, 1995
  2. Foulis, A.K., Liddle, C.N., Farquharson, M.A., Richmond, J.A., Weir, R.S. The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia 29: 267-274, 1986 https://doi.org/10.1007/BF00452061
  3. Eizirik, D.L., Flodstrom, M., Karlsen, A.E., Welsh, N. The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic $\beta$ cells. Diabetologia 39: 875-890, 1996
  4. Mandrup-Poulsen, T. The role of interleukin-1$\beta$ in the pathogenesis of IDDM. Diabetologia 39: 1005-1029, 1996 https://doi.org/10.1007/BF00400649
  5. Southern, C., Schulster, D., Green, I.C. Inhibition of insulin secretion by interleukin-1$\beta$ and tumour necrosis factor-$\alpha$ via an L-arginine-dependent nitric oxide generating mechanism. FEBS Letters 276: 42-44, 1990 https://doi.org/10.1016/0014-5793(90)80502-A
  6. Eizirik, D.L., Sandler, S., Welsh, N., Cetkovic-Cvrlje, M., Nieman, A., Geller, D.A., Pipeleers, D.G., Bendtzen, K., Hellerstrom, C. Cytokines suppress human islet function irrespective of their effects on nitric oxide generation. Journal of Clinical Investigation 93: 1968-1974, 1994 https://doi.org/10.1172/JCI117188
  7. 신민교. 원색 임상본초학, 영림출판사, pp 241-242, 250-252, 283-284, 1983
  8. 노진구, 박정배, 이선동. 천화분이 실험적 당뇨 흰쥐의 췌장 내분비세포에 미치는 영향에 관한 면역세포화학적 연구. 방제학회지 2(1):97-105, 1991
  9. Xie, Q.W., Cho, H.J., Calaycay, J., Mumford, R.A., Swiderek, K.M., Lee, T.D., Ding, A., Troso, T., Nathan, C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256: 225-228, 1992 https://doi.org/10.1126/science.1373522
  10. Jeong, J.Y., Jue, D.M. Chloroquine inhibits processing of tumor necrosis factor in lipopolysaccharide-stimulated RAW 264.7 macrophages. Journal of Immunology 158: 4901-4907, 1997
  11. Kim, H.R., Rho, H.W., Park, B.H., Park, J.W., Kim, J.S., Kim, U.H., Chung, M.Y. Role of $Ca^{2+}$ in alloxan-induced pancreatic $\beta$-cell damage. Biochimica et biophysica acta 1227: 87-91, 1994 https://doi.org/10.1016/0925-4439(94)90111-2
  12. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analasis Biochememistry 72: 248-254, 1976 https://doi.org/10.1016/0003-2697(76)90527-3
  13. Kwon, K.B., Kim, E.K., Jeong, E.S., Lee, Y.H., Lee, Y.R., Park, J.W., Ryu, D.G., Park, B.H. Cortex cinnamomi extract prevents streptozotocin- and cytokine-induced $\beta$-cell damage by inhibiting NF-${\kappa}B$. World Journal of Gastroenterol 12: 4331-4337, 2006 https://doi.org/10.3748/wjg.v12.i27.4331
  14. Kwon, K.B., Kim, J.H., Lee, Y.R., Lee, H.Y., Jeong, Y.J., Rho, H.W., Ryu, D.G., Park, J.W., Park, B.H. Amomum xanthoides extract prevents cytokine-induced cell death of RINm5F cells through the inhibition of nitric oxide formation. Life Sciences 73: 181-191, 2003 https://doi.org/10.1016/S0024-3205(03)00267-4
  15. Kwon, K.B., Ryu, D.G., Shin, M.K., Shin, B.C., Hwang, W.J., Lee, Y.R., Park, J.W., Park, B.H. Fructus Benincasae Recens extract prevents cytokine-induced nitric oxide formation and cytotoxicity of RINm5F cells. Immunopharmacology & Immunotoxicology 25: 615-625, 2003b https://doi.org/10.1081/IPH-120026445
  16. Kim, E.K., Kwon, K.B., Han, M.J., Song, M.Y., Lee, J.H., Lv, N., Ka, S.O., Yeom, S.R., Kwon, Y.D., Ryu, D.G., Kim, K.S., Park, J.W., Park, B.H. Coptidis rhizoma extract protects against cytokine-induced viability reduction in pancreatic $\beta$-cells through suppression of NF-${\kappa}B$ activation. Experimental and Molecular Medicine 39: 149-159, 2007 https://doi.org/10.1038/emm.2007.17
  17. Kim, E.K., Kwon, K.B., Han, M.J., Song, M.Y., Lee, J.H., Lv, N., Choi, K.B., Ryu, D.G., Kim, K.S., Park, J.W., Park, B.H. Inhibitory effect of Artemisia capillaris extract on cytokine-induced nitric oxide formation and cytotoxicity of RINm5F cells. International Journal of Molecular Medicine, 19(3):535-540, 2007
  18. Southern, C., Schulster, D., Green, I.C. Inhibition of insulin secretion by interleukin-1$\beta$ and tumour necrosis factor-$\alpha$ via an L-arginine-dependent nitric oxide generating mechanism. FEBS Lett 276: 42-44, 1990 https://doi.org/10.1016/0014-5793(90)80502-A
  19. Welsh, N., Eizirik, D.L., Bendtzen, K., Sandler, S. Interleukin-1-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase. Endocrinology 129: 3167-3173, 1991 https://doi.org/10.1210/endo-129-6-3167
  20. Eizirik, D.L., Flodstrom, M., Karlsen, A.E., Welsh, N. The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic $\beta$ cells. Diabetologia 39: 875-890, 1996
  21. Baeuerle, P.A., Henkel, T. Function and activation of NF-${\kappa}B$ in the immune system. Annual Review of Immunology 12: 141-179, 1994 https://doi.org/10.1146/annurev.iy.12.040194.001041
  22. Baldwin, A.S. Jr. The NF-${\kappa}B$ and I${\kappa}B$ proteins: new discoveries and insights. Annual Review of Immunology 14: 649-683, 1996 https://doi.org/10.1146/annurev.immunol.14.1.649